一种基于Faster-RCNN的车辆实时检测改进算法

上传者: 38640473 | 上传时间: 2022-03-29 13:42:37 | 文件大小: 992KB | 文件类型: -
随着交通愈加发达,道路愈加拥堵,如何实时准确地获取车辆基本信息以便交通部门及时管理特定路段和路口的车辆显得日益重要.对交通视频中车辆的检测和识别,不仅需要实时检测,还要保证其准确性.针对实际情况中车辆之间的遮挡、光照的变化、阴影、道路旁树枝的晃动、背景中固定对象的移动等因素严重影响检测与识别的精度的问题,提出基于Faster-RCNN(Faster-Regions with CNN features)的车辆实时检测改进算法.首先采用k-means算法对KITTI数据集的目标框进行聚类,得到合适的长宽比,并增加一组尺度(64~2)以适应差异较大的车辆尺寸;然后改进区域提案网络,降低计算量,优化网络结构;最后在训练阶段采用多尺度策略,降低漏检率,提高精确率.实验结果表明:改进后的车辆检测算法的mAP(mean Average Precision)达到了82.20%,检测速率为每张照片耗时0.03875 s,基本能够满足车辆实时检测的需求.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明