本研究的标题为“非线性事件触发控制策略的多智能体系统有限时间一致性”,该标题所涵盖的知识点主要涉及多智能体系统的控制理论、事件触发控制策略以及非线性系统在有限时间内的同步(一致性)问题。 多智能体系统是由多个自主的智能体(如机器人、移动传感器、无人机等)组成的分布式系统,它们通过相互之间的通信和协作来完成复杂的任务。多智能体系统的协调控制吸引了众多研究领域的关注,因为它在很多应用中,如无人机飞行控制、多个微卫星的姿态同步、环境监控等方面具有重要的作用。 在多智能体系统中,“一致性”(consensus)是一个非常核心的概念。一致性指的是所有智能体通过相互作用最终在某种量(如位置、速度、方向等)上达成一致。这种行为是形成控制、集群等更复杂集体行为的基础。例如,在形成控制中,智能体需要根据与邻居智能体之间的相对位置信息来调整自己的位置,以形成预定的队形或图案。 在实际应用中,由于每个智能体通常具有有限的能量资源,因此在控制器设计中必须考虑能源的节约。传统的一致性控制策略通常需要每个智能体定期地更新控制输入并与其他智能体进行通信,这可能会导致通信资源的大量消耗和控制器更新的高频率。 为了解决这个问题,本研究提出了一种基于事件触发策略的非线性一致性协议。事件触发控制是一种智能控制方法,它根据预设的条件来决定是否更新控制器或进行通信,从而显著减少了通信消耗和控制器更新的频率。与传统的周期性触发方式相比,事件触发策略只有在系统状态发生显著变化时才会触发控制器的更新,这样可以避免频繁的计算和通信,从而节省能源。 文章中提出的两个新的非线性一致性协议,可以显著减少通信消耗和控制器更新频率。研究结果表明,在提出的非线性一致性协议下,多智能体系统能够在有限时间内达成一致性。此外,研究还提供了触发间隔的界限,以证明不存在Zeno行为(指控制输入的触发频率无限大的情况,即所谓的“无止境”的行为)。 为了验证所提出的一致性协议的有效性,研究中采用了仿真实验。仿真实验是验证理论和算法可行性的重要手段,通过仿真实验可以模拟多智能体系统在不同条件下的行为,并验证一致性协议是否能够使系统达到预期的同步效果。 文章的研究内容包括了对领导者存在和不存在两种情况下多智能体系统的有限时间一致性问题的探讨。在有领导者的情况下,多智能体系统会以领导者的行为作为参考,使得所有智能体跟随领导者达成一致性。而在没有领导者的情况下,智能体需要通过相互之间的信息交换,自主地达成一致性。 研究论文通常包含提出问题、设计方法、理论分析、仿真实验和结论等部分。本研究的理论分析部分可能涉及到数学证明和稳定性分析,以展示在特定条件下多智能体系统达成一致性的可能性和稳定性。此外,论文可能会讨论所提出的协议与现有协议相比的性能优劣,以及实际应用中的潜在问题和解决方案。 需要注意的是,研究论文的写作通常遵循一定的格式和标准。例如,论文的作者会给出通信地址和电子邮件地址,以便读者进行交流和询问。此外,文章会标明接收日期、修订日期和接受日期,以及文章的DOI编号,这有助于读者查找和引用。在论文中还会出现关键词和摘要部分,以简明扼要地介绍研究内容和结论。这些内容虽然不是直接的学术知识点,但它们为学术交流提供了便利。
2025-05-12 21:00:00 304KB 研究论文
1
内容概要:本文详细介绍了如何利用MATLAB及其工具箱进行机械臂的单智能体和多智能体控制系统的开发。首先,通过Robotics Toolbox创建机械臂模型,然后构建强化学习环境,设计奖励函数,并采用PPO算法进行训练。对于多智能体系统,讨论了协同工作的挑战以及解决方案,如使用空间注意力机制减少输入维度。此外,文章还探讨了从二维到三维控制的转换难点,包括观测空间和动作空间的设计变化,以及动力学模型的调整。文中提供了大量MATLAB代码片段,展示了具体实现步骤和技术细节。 适合人群:具有一定MATLAB编程基础和机器学习理论知识的研究人员、工程师。 使用场景及目标:适用于希望深入了解机械臂控制原理,特别是希望通过强化学习方法提高机械臂操作精度和灵活性的研发团队。目标是掌握如何构建高效的单智能体或多智能体控制系统,应用于工业自动化、机器人竞赛等领域。 其他说明:文章强调了实践中遇到的问题及解决方案,如动力学方程求解方法的选择、奖励函数的设计技巧等。同时提醒读者注意一些常见的陷阱,比如不当的动作空间设计可能导致的不稳定行为。
2025-05-07 08:55:44 1003KB
1
【MADRL】多智能体价值分解网络(VDN)算法 ===================================================================== 资源包含VDN、QMIX算法的项目代码 ===================================================================== 多智能体强化学习(MARL, Multi-Agent Reinforcement Learning)中,一个关键挑战是如何在多个智能体的协作环境下学习有效的策略。价值分解网络(VDN, Value Decomposition Network)是解决这一问题的一种重要方法,特别是在 集中训练,分散执行(CTDE, Centralized Training and Decentralized Execution)框架中,VDN提供了一种分解联合价值函数的策略,使得多个智能体可以高效协作并学习。
2025-04-19 11:21:59 26KB 网络 网络
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-11 12:52:10 3.53MB matlab
1
多智能体系统——竞争网络下异构多智能体系统的分组一致性问题 Group consensus of heterogeneous multi-agent system (附论文链接+源码Matlab) 多智能体系统——具有非线性不确定干扰的多智能体系统的固定时间事件触发一致性控制(附论文链接+源码Matlab) 2021年五一杯数学建模消防救援问题思路 2021年MathorCup A题自动驾驶中的车辆调头问题思路(附论文 程序链接)
2024-08-11 18:45:48 11KB 网络 网络 matlab
1
分享一种强化学习的建模过程,它是将通信当中的资源分配问题建立成强化学习方法,资源分配是指通信网络中,频谱资源、信道、带宽、天线功率等等是有限的,怎么管理这些资源来保证能够通信的同时优化整个网络吞吐量、功耗,这个就是网络资源分配。这里多智能体就是涉及博弈论的思想。
2024-06-26 09:50:15 935KB 强化学习 多智能体 无人机 资源分配
1
matlab仿真程序,二阶MASs,事件触发机制 这段代码是一个带有领导者的二阶多智能体的领导跟随一致性仿真。以下是对代码的分析: 1. 代码初始化了系统参数,包括邻接矩阵A、拉普拉斯矩阵L、系统的领导跟随矩阵H等。 2. 代码定义了一个二阶系统的微分方程模型,并使用RK4方法解方程。 3. 代码使用事件触发机制来控制智能体之间的通信和更新。每个智能体根据自身的位置和速度误差以及邻居智能体的误差信息来决定是否触发通信。 4. 代码通过绘制图像展示了系统的位置和速度状态、智能体在二维空间中的位置分布、控制输入和误差变化趋势等。 这段代码应用在多智能体系统的领导跟随问题中,通过控制输入和事件触发机制,实现了智能体之间的协同运动和领导者的跟随。算法的优势在于通过事件触发机制减少了通信开销,提高了系统的效率和鲁棒性。 需要注意的是,代码中的参数需要根据具体问题进行调整,包括邻接矩阵A、系统的领导跟随矩阵H、控制参数alpha、beta、lambda等。此外,代码中的事件触发条件也可以根据具体需求进行修改。 对于新手来说,从这段代码中可以学到以下几点: 1. 了解多智能体系统的领导跟
2023-09-15 12:39:31 166KB 网络 网络 matlab 软件/插件
1
研究了一类具有动态领导者的一阶多智能体系统的一致性问题。基于事件触发机制给出两种一致性协议,即集中式触发控制协议和分散式触发控制协议。利用李雅普诺夫稳定性理论和模型转化方法分别给出多智能体系统在两种协议作用下达到领导跟随一致的充分条件。同时,理论计算表明,系统在两种控制协议下均不存在Zeno行为。实例仿真结果验证了理论方案的有效性。
2023-07-06 21:00:58 533KB 论文研究
1
多智能体在飞行过程中进行避障。利用的是一致性理论。值得学习。
基于RBF神经网络的多智能体编队控制MATLAB仿真
2023-05-19 20:15:35 3KB matlab RBF 多智能体
1