建立并求解一个基于成本最小的供应链网络模型。与以往研究不同,在该模型中生产一种产品需要至少两种原料,每种原料都可以由备选供应商提供。根据模型的特点,用0、1代表对原材料供应商、工厂和分销中心的选择情况,以MATLAB 7.6为平台,运用Sheffield大学的遗传算法工具箱,将遗传算法与线性规划算法相结合,实现了模型的求解。算例结果表明,给出的染色体编码方案正确,混合遗传算法有效,能解决多周期、多原料的供应链网络成本优化问题。还探讨了需求和距离变化,以及需求随机时对最优成本和最优个体的影响。研究表明,需求变化的影响大于距离变化的影响,需求随机对最优成本和最优个体的影响不大。
1