内容概要:本文介绍了激光SLAM(同步激光扫描定位与映射)算法的一项重要改进——增强重定位的Cartographer算法。针对传统Cartographer算法在大型环境中重定位耗时长的问题,提出了优化算法流程、改进匹配策略以及引入多传感器融合的方法。经过在五千平方米车库中的实验证明,新算法将重定位时间从数分钟缩短到3.35秒,极大提升了机器人工作的效率和用户体验。文中不仅详细阐述了技术细节,还提供了改进后的算法源码供开发者研究和使用。 适合人群:从事机器人技术研发的专业人士、对SLAM算法感兴趣的科研人员和技术爱好者。 使用场景及目标:适用于需要提升机器人在复杂环境下快速准确定位能力的应用场景,如自动驾驶车辆、仓储物流机器人等。目标是帮助技术人员理解和掌握最新的SLAM算法优化方法,推动相关领域的技术创新和发展。 其他说明:文章强调了开源精神的重要性,鼓励更多人参与到技术交流和共享中来,共同推进机器人技术的进步。
2025-08-20 16:53:28 2.26MB 多传感器融合 开源项目
1
内容概要:本文详细介绍了基于51单片机的智能家居控制系统的设计与实现。系统集成了时间、温湿度、烟雾浓度和光照强度等多种传感器数据的实时监测与显示,并实现了声光报警、LED灯控制和电机正反转等功能。具体来说,系统通过DS1302芯片获取并显示当前时间,利用温湿度传感器监控室内环境并在特定条件下触发LED和电机动作,通过烟雾传感器检测异常并发出警报,以及根据光照强度自动开关LED灯。整个设计在Proteus8.9仿真软件中完成电路设计与仿真,并使用Keil5编程软件用C语言编写了相关程序。 适合人群:对嵌入式系统和智能家居感兴趣的电子工程学生、初学者及有一定经验的研发人员。 使用场景及目标:适用于希望深入了解51单片机及其外设接口的应用开发者,特别是那些想要构建智能家庭自动化系统的个人或团队。目标是掌握从硬件连接到软件编程的完整流程,能够独立完成类似项目的开发。 其他说明:文中提供了详细的硬件连接方法、编程步骤以及仿真测试过程,帮助读者更好地理解和实践该项目。
2025-06-23 10:25:10 783KB
1
多传感器标定算法是为了解决测量系统中由制造和装配误差所引起的机械部件的测量问题。为了确保测量精度,需要将不同类型的传感器(包括接触式和非接触式传感器)标定到同一个坐标系中,这样才能获得准确的测量数据。本文提出的标定算法基于单纯形法,该方法通过接触式传感器的标定为基础,并结合Fourier函数拟合非接触传感器的测量路径,以构造参数标定数学模型,并进行参数优化。 标定的基本原理是利用数学模型去描述传感器在测量过程中的误差,并通过一定的算法来修正这些误差。在此过程中,标定的目的是为了消除或减小系统的固有误差,从而提高系统的整体测量精度。多传感器系统由于其复杂性,需要综合考虑各种传感器的特性,以及它们之间的相互作用和影响。 单纯形法是一种优化算法,主要用于寻找多维空间的最优解。它广泛应用于工程、经济学、运筹学等领域。在多传感器标定算法中,单纯形法可以用来寻找到使误差最小化的最佳参数设置。通过迭代计算,逐步逼近最优解,从而达到标定的目的。 在接触式传感器的标定过程中,通常需要通过移动工作台或旋转工作台来进行坐标测量。但是由于制造和装配过程中存在的误差,工作台的移动方向和旋转方向的参数并不是完全已知的。为了获得精确的测量数据,需要确定三维坐标与移动和旋转参数之间的关系。而单纯的使用特定标块进行标定往往复杂且依赖于特定条件,因此需要一种更加通用和高效的方法。 文中提到了几种单一传感器标定的方法,包括微分标定法、简单齿形标定靶以及圆形阵列靶标等。这些方法在不同的测量系统中实现了不同精度的标定,但它们有一个共同的局限性,即它们更多地侧重于单一传感器的标定,而没有充分考虑同一测量系统中多个传感器的同步标定问题。 为了改进和简化标定过程,减少标定误差,本文提出了一种综合多传感器的测量系统,并基于单纯形法的多传感器标定算法。该算法不仅考虑了接触式传感器的标定,还通过Fourier函数拟合非接触式传感器的测量路径,构建参数标定的数学模型,实现了标定参数的最优化。 通过实验验证,本文算法的实例结果显示,使用该算法进行标定后,测量误差相对较小。这一结论表明,所提出的基于单纯形法的多传感器标定算法在提升测量精度方面是有效的,并且具有较好的应用前景。 通过以上的分析,我们可以知道,多传感器标定算法的核心在于如何处理传感器间的协同工作和误差校正,以及如何构建准确的数学模型来描述和修正这些误差。单纯形法作为一种有效的优化工具,在多传感器系统的标定中发挥着重要作用。此外,多传感器标定技术的发展对于提高测量系统的精确度和可靠性具有重要的意义,尤其是在复杂形状工件的外形测量中,其作用尤为突出。随着相关技术的不断进步,未来多传感器标定算法有望在更多的测量应用中得到广泛应用。
2025-05-11 14:22:09 298KB 首发论文
1
【内容概要】: 本资源深度剖析基于STM32微控制器的智能安防系统开发全流程,以STM32F407ZGT6为主控芯片,集成PIR人体红外传感器、MQ-2烟雾探测器、HC-SR04超声波模块等多传感器数据融合方案。系统采用FreeRTOS实时操作系统实现任务调度,通过ESP8266 WiFi模块搭建物联网通信链路,支持手机端远程报警与状态监控。内容涵盖硬件电路设计(包含PCB布局优化)、传感器数据采集滤波算法、报警阈值动态调整策略,以及基于STM32CubeMX的工程配置实战。配套提供完整的Keil MDK工程源码、电路原理图、AT指令集调试日志。 ​【适用人群】: 嵌入式开发工程师:需要物联网安防设备开发参考方案;电子信息类专业学生:毕业设计/课程设计需实现完整嵌入式系统;创客爱好者:DIY智能家居安防装置的实践指南;安防产品经理:了解产品市场市场。 ​【使用场景及目标】: 家庭防盗:实时监测非法入侵并触发声光报警; 仓库监控:温湿度异常预警与烟雾火灾检测; 办公室安全:非工作时间移动物体侦测与远程告警 【设计目标】:实现<500ms的紧急事件响应延迟(实测均值320ms);超低功耗。
2025-04-25 16:10:17 14.42MB 毕业设计 嵌入式开发 STM32 智能安防
1
### 多传感器融合技术概述 在现代信息技术领域中,多传感器融合技术被广泛应用于自动驾驶、机器人导航、环境监测等多个方面。这项技术的核心在于通过集成多种不同类型传感器的数据来提高系统的感知能力,实现更准确、更全面的信息获取。其中,毫米波雷达与视觉传感器的融合是目前研究热点之一。 ### 毫米波雷达与视觉传感器简介 #### 毫米波雷达 毫米波雷达工作于毫米波段(通常指30GHz至300GHz频段),具有体积小、重量轻、穿透能力强等特点,在恶劣天气条件下的表现尤为突出。它可以测量目标的距离、速度以及角度等信息,适用于远距离目标检测。 #### 视觉传感器 视觉传感器主要包括摄像头,能够捕捉到丰富的图像信息,如颜色、纹理等细节,非常适合进行目标识别与分类。但由于其依赖光线条件,因此在光照不足或强光直射等场景下效果不佳。 ### 多传感器融合原理 多传感器融合旨在通过算法处理不同传感器采集到的数据,实现互补优势。具体而言: 1. **数据预处理**:对原始传感器数据进行清洗、降噪等操作。 2. **特征提取**:从传感器数据中提取有用特征,如雷达的目标距离、速度信息;图像的目标形状、颜色特征等。 3. **数据关联**:确定来自不同传感器的同一目标数据,这一过程往往较为复杂,需要解决时空同步问题。 4. **状态估计**:利用卡尔曼滤波、粒子滤波等方法对目标状态进行估计,提高估计精度。 5. **决策融合**:根据状态估计结果做出最终决策,如自动驾驶中的避障决策。 ### 毫米波雷达与视觉融合应用场景 1. **自动驾驶**:通过融合雷达与视觉数据,可以实现对周围环境的精准感知,包括行人检测、障碍物识别等功能,提升车辆行驶安全性。 2. **机器人导航**:在复杂环境中,利用多传感器融合技术可以帮助机器人更准确地定位自身位置,并规划合理路径。 3. **安防监控**:结合毫米波雷达的全天候特性与视觉传感器的高分辨率图像,能够在各种环境下实现高效监控。 ### 关键技术挑战 尽管毫米波雷达与视觉融合带来了显著优势,但仍面临一些技术难题: 1. **数据同步**:如何确保来自不同传感器的数据在时间上严格同步是一个重要问题。 2. **信息关联**:尤其是在动态变化的环境中,正确关联不同传感器的数据是一项挑战。 3. **计算资源限制**:多传感器融合涉及到大量数据处理,对计算平台提出了较高要求。 ### 结论 随着技术不断进步及应用场景日益扩展,毫米波雷达与视觉传感器的融合将展现出更为广阔的应用前景。通过对两种传感器数据的有效整合,可以有效提升系统的鲁棒性和适应性,为自动驾驶、机器人技术等领域带来革命性变革。未来,随着更多创新算法的提出及相关硬件设备性能的持续优化,我们有理由相信多传感器融合技术将在更多领域发挥关键作用。
2025-04-14 13:12:43 37B
1
为方便管理员更为直观地观察网络安全状况以便迅速作出应变措施, 提出了基于集对分析的网络安全态势评估模型。首先对各个传感器的数据进行预处理, 得到服务器和攻击的规范化数据, 然后利用集对分析理论融合来自多个传感器的数据得到主机的安全态势, 最后采用自下而上的层次化安全态势量化评估模型, 以评估网络的整体态势。通过对DARPA 2000数据集的分析, 证明集对分析比传统方法更能够对网络态势所处的级别进行明确划分, 更好地得出整个网络简单的安全态势。
1
该程序介绍了一种用于多传感器的平方根容积卡尔曼滤波(SRCKF)算法。结合一个实例和matlab程序对算法的具体实现过程进行了讲解。从仿真图中可以看出,滤波误差不断减小,说明滤波收敛。并且单个滤波的误差小于观测数据误差,证明滤波算法有效。同时融合后的滤波误差小于单个滤波器的误差,证明融合算法有效。仿真结果表明,所提融合滤波算法能够实现有效滤波跟踪。
2024-02-28 20:34:20 2KB
1

在多准则下考察传感器的融合权重, 提出一种新的多传感器数据融合方法. 通过多个性能指标折中估计传感器权重, 以降低决策的主观性和偶然性; 提出从不同融合级别来定义多个准则, 定性地提高了多准则的信息量; 在没有决策者对各准则偏好信息的情况下, 以最小化准则冗余度和最大化评价差异度为原则建立多目标优化模型对准则权重向量优化求解. 仿真实验结果表明, 相比于单准则和单层次的融合方法, 所提出方法具有更低的决策风险和更高的稳定性.

2024-02-26 15:22:37 284KB
1
刮板输送机是煤矿井下重要的开采设备之一,简要分析了现阶段刮板输送机的故障诊断现状,针对刮板输送机故障种类繁多,相互影响大且不易诊断的问题,根据多传感器数据融合理论,提出了RBF和模糊积分相结合的刮板输送机故障诊断数据融合方法。在特征级采用RBF,可以对同类传感器采集的数据进行快速学习和收敛,得到同源数据对每一类故障的模糊测度,以便在高维空间内进行同源数据的线性可分。决策级采用模糊积分理论利用该模糊测度通过模糊积分计算,获得刮板输送机故障信息的预测结果,该方法具有较好的容错性,简化了冗余信息,降低了故障相互影响的关联性。刮板输送机减速器电机故障的诊断研究表明,文中所提出的方法有助于克服故障类型的不确定性,在整体上确保故障数据的完备性,正确地判定故障的类型,提高了故障诊断的准确性。
2024-02-26 15:20:55 274KB 数据融合 模糊积分 刮板输送机
1
多传感器信息融合,介绍中图片为INS+ DVL组合程序,此外还有imu+ gps组合等其他程序
2023-10-20 19:38:49 1.78MB 嵌入式 范文/模板/素材
1