在多准则下考察传感器的融合权重, 提出一种新的多传感器数据融合方法. 通过多个性能指标折中估计传感器权重, 以降低决策的主观性和偶然性; 提出从不同融合级别来定义多个准则, 定性地提高了多准则的信息量; 在没有决策者对各准则偏好信息的情况下, 以最小化准则冗余度和最大化评价差异度为原则建立多目标优化模型对准则权重向量优化求解. 仿真实验结果表明, 相比于单准则和单层次的融合方法, 所提出方法具有更低的决策风险和更高的稳定性.
对于带未知互协方差的两传感器系统, 提出一种协方差交叉(CI) 融合鲁棒稳态Kalman 滤波器, 它关于未知
互协方差具有鲁棒性. 严格证明了该滤波器的实际精度高于每个局部滤波器的精度, 但低于带已知互协方差的最优
融合Kalman 滤波器的精度. 基于协方差椭圆给出了精度关系的几何解释. 进一步将上述结果推广到一般多传感器情
形. 一个跟踪系统的Monte-Carlo 仿真例子表明, 其实际精度接近于带已知互协方差的最优融合器的精度.