基于形状轮廓多模板匹配的C++源码,采用OpenCV和Qt(MSVC2015)开发,支持多目标并行定位、计数、分类功能,亚像素级定位精度与加速运行速度。,基于OpenCV和C++的多模板多目标高精度亚像素定位并行处理源码——支持模板匹配、定位、计数及分类功能开发实战,c++ opencv开发的基于形状(轮廓)多模板多目标的模板匹配源码,可实现定位,计数,分类等等,定位精度可达亚像素级别,运行速度采用并行加速。 开发工具:qt(msvc2015) + opencv6 ,C++;OpenCV;形状(轮廓)多模板多目标模板匹配;定位;计数;分类;亚像素级别定位精度;并行加速;Qt(MSVC2015);OpenCV6。,C++ OpenCV形状多模板匹配源码:亚像素定位并行加速
2025-09-12 01:13:33 2.02MB sass
1
在计算机视觉和图像处理领域,模板匹配是一种基础而关键的技术,它通过在参考图像中搜索与模板图像最为相似的区域来进行目标识别。传统的模板匹配方法主要基于像素值的相似度计算,对于图像的缩放、旋转等变化不够鲁棒。而本项目的目标是通过C++结合OpenCV 4.5库,模拟商业软件Halcon的高级功能,实现一种基于形状的模板匹配算法,该算法不仅能够支持目标图像在尺度和旋转角度上的变化,还能达到亚像素级别的匹配精度。此外,源代码还支持C#语言版本,便于不同开发环境的用户使用。 为了达到这样的技术水平,开发者采用了多种图像处理技术,例如边缘检测、轮廓提取、形状描述符以及特征点匹配等。这些技术的综合运用,提高了模板匹配的准确性,使得算法能够更精确地识别出目标物体的形状和位置,即使在图像中目标物体发生了变形、遮挡或视角改变的情况下。 形状模板匹配是一种高级的图像匹配技术,它通过比较目标图像和模板图像之间的形状特征来进行匹配。与传统的基于像素的模板匹配相比,形状模板匹配具有更强的抗干扰能力,能够处理因物体变形、视角变化等引起的目标图像与模板图像之间的差异。在实现上,形状模板匹配算法通常包括形状特征提取、形状特征描述、形状相似度计算等关键步骤。 形状特征描述是形状模板匹配技术中的核心部分,常见的形状特征描述方法包括傅里叶描述符、不变矩描述符、Zernike矩描述符等。其中,不变矩描述符因其具有旋转不变性、尺度不变性和平移不变性等特性,在模板匹配领域中得到了广泛应用。算法通过提取这些描述符,来表征物体的形状特征,然后通过比较描述符之间的相似度来实现匹配。 在实现亚像素精度方面,通常需要采用更为复杂的插值算法来获取更为精细的匹配结果。例如,可以通过二次插值、三次样条插值等方法来估计最佳匹配位置,从而达到亚像素级别的精确度。这样的高精度匹配对于工业检测、机器人视觉、生物医学图像分析等领域至关重要。 除了技术细节之外,开发者还提供了详尽的文档资料,以帮助用户更好地理解和使用源代码。文档涵盖了算法的设计理念、实现方法以及使用示例,为用户提供了从入门到精通的学习路径。而且,源码开放的特性意味着用户可以自由地对代码进行修改和优化,以满足特定的应用需求。 值得一提的是,项目还支持C#语言,这意味着具有.NET开发背景的开发者也能够轻松地将这种高效的图像处理算法集成到自己的项目中。这对于希望在应用程序中集成先进图像处理功能的开发者来说,无疑是一个巨大的便利。 本项目通过C++和OpenCV实现的基于形状的模板匹配算法,在技术上具有很高的创新性和实用性。它不仅能够处理图像缩放和旋转等复杂变化,还能够实现高精度的匹配,是计算机视觉和图像处理领域中的一项重要成果。
2025-09-05 11:41:33 456KB 正则表达式
1
基于形状匹配和嵌入的3D车道线检测算法 本文提出了一种基于双层次形状注意力网络(DSANet)的3D车道检测算法,该算法由两个分支组成,一个分支预测细粒度路段形状和对近似车道实例形状进行编码的形状嵌入,另一个分支检测车道实例的粗粒度结构。通过引入两级形状匹配损失函数,对两个分支输出的形状参数进行联合优化,提高了训练精度。 在BEV-3DLanes数据集上的实验表明,我们的方法优于以前的方法,具有出色的准确性,特别是在更高的精度标准。我们的方法可以检测高精度的3D车道,具有广泛的实际应用前景,如车道偏离警告、车道保持辅助、车辆导航和高清地图构建等。 该算法的主要贡献包括:开发了一种新型的双层形状注意力网络(DSANet),该网络具有两个分支,融合了局部和全局层面的上下文信息,以检测高精度的3D车道;提出了简单有效的车道形状双层表示和相应的形状匹配约束,分别预测细粒度路段形状和粗粒度实例形状;设计了一个形状引导的片段聚合器,将柔性片段聚类成实例,实例形状作为显式聚类中心。 在现有的基于LiDAR和基于图像的车道检测方法中,本文的算法具有出色的准确性和速度优势。与基于分割的方法相比,本文的算法无需密集的注释和冗余的预测,可以实现快速和高效的车道检测。 在自动驾驶中,3D车道检测是一项重要的视觉感知任务,提供了厘米级的位置、精确的几何形状以及本车道和相邻车道的实例级信息。随着自动驾驶技术的发展,高精度的3D车道检测将变得越来越重要。 在基于LiDAR点云的3D车道检测中,需要精确的位置、准确的拓扑结构和可区分的实例。在本文中,我们提出了一种基于双层次形状注意力网络(DSANet)的解决方案,该网络具有两个分支,一个分支预测细粒度路段形状和对近似车道实例形状进行编码的形状嵌入,另一个分支检测车道实例的粗粒度结构。 在本文的算法中,我们引入了一种形状匹配和嵌入损失函数,对两个分支输出的形状参数进行联合优化,提高了训练精度。此外,我们还设计了一个形状引导的片段聚合器,将柔性片段聚类成实例,实例形状作为显式聚类中心。 本文提出了一种基于双层次形状注意力网络(DSANet)的3D车道检测算法,该算法具有出色的准确性和速度优势,能够检测高精度的3D车道,具有广泛的实际应用前景。
2025-08-17 13:45:06 2.02MB
1
缺陷检测 基于形状和颜色特征的分析 matlab
2022-07-14 20:06:27 31KB 缺陷
基于颜色特征、基于形状特征或者基于颜色和形状综合特征图像检索
2021-11-23 14:39:25 20.4MB 基于颜色特征
1
博客:https://editor.csdn.net/md?not_checkout=1&articleId=121030973 基于形状的模板匹配,仿射变换,模板跟随
2021-11-01 17:04:40 7.14MB halcon 基于形状 模板匹配 仿射变换
1
基于形状特征的液压传动和润滑系统固体污染物计算机视觉检测原理.pdf
2021-10-20 14:07:35 82KB 计算机 视觉 图形处理 参考文献
行业分类-网络游戏-基于形状记忆聚氨酯半互穿网络的温敏防水透湿膜制法.zip
行业分类-电信-一种基于形状记忆合金的精密流量泵.rar