ISIC 2017皮肤病变图像分割公开数据集,内涵1500张训练图片,1500张训练图片标签,650张测试图片,650张测试图片标签(也可自行划分训练集与测试集)。科研小白初入图像分割领域必备数据集,深度学习模型常用!!!!小白必要数据集!!!
2024-09-28 15:40:55 20.2MB 数据集
1
1、具体要求:完成实验并提交实验报告。 2、实验内容:在Matble中使用分水岭算法对图像进行分割处理。 3、实验原理:分水岭变换的思想源于地形学,它将图像看作是地形上被水覆盖的自然地貌,图像中每一灰度值表示该店海拔高度,其每一局部极小值及其影响区域称为集水盆,而集水盆边界为分水岭。 在图像分割中,分水岭变换是指将原图变换成一个标记图像,其所有属于同一盆中的点被赋予同一标记,并用特殊标记来标识分水岭上的点。 分水岭算法是基于形态学分割的算法,利用形态学处理函数,不仅能达到有效分割图像的目的,而且能消除过分个现象。 分为若干类别的处理过程。传统的遥感影像分类方法忽略了影像的空间结构信息,精度不是很高。特别是上个世纪90年代以来,高分辨率遥感影像(如IKONOS,SPOT5,COSMOS,OrbView,QuickBird等)被广泛应用,景观的结构、纹理等就表现得更加清楚。遥感影像的纹理特征提取已经成为一种重要的提高遥感影像分类精度的手段。目前,遥感影像纹理分析方法主要有自相关函数分析法、行程长度分析法、灰度共生矩阵分析法、傅立叶频谱分析法、小波分析法及分形分析法等 《基于Matlab的遥感图像分水岭算法详解》 图像分割是数字图像处理中的核心环节,对于理解和解析遥感图像至关重要。本篇文章主要探讨如何使用Matlab中的分水岭算法对遥感图像进行有效的分割处理,以提高遥感影像分类的精度。 分水岭算法是一种基于形态学的图像分割方法,它的灵感来源于地形学。在这一理论框架下,图像被视为地形,其中的每个灰度值代表不同的海拔高度。图像中的局部最小值及其邻域被称为集水盆地,而这些盆地之间的边界即为分水岭。在实际应用中,分水岭变换将原始图像转化为标记图像,同一盆地内的像素点赋予相同的标记,分水岭点则用特殊的标记区分。这种算法不仅能有效地分割图像,还能避免过度分割的问题。 遥感图像分割在高分辨率遥感影像广泛应用的背景下显得尤为重要。传统的分类方法往往忽视了影像的空间结构信息,导致分类精度不高。随着IKONOS、SPOT5、COSMOS等高分辨率卫星影像的普及,对影像的纹理特征提取成为提高分类精度的关键。常见的纹理分析方法包括自相关函数分析、行程长度分析、灰度共生矩阵分析、傅立叶频谱分析、小波分析以及分形分析等。 在Matlab环境中,实施分水岭算法通常涉及以下步骤: 1. 图像预处理:将彩色图像转化为灰度图像,以减少计算复杂度。这可以通过`rgb2gray`函数实现。 2. 直接应用分水岭变换:通过`watershed`函数对灰度图像进行分水岭变换。然而,直接应用可能会导致过度分割,例如花坛、广场、水塘等地物被过分划分。 3. 改进的分水岭算法:为解决过度分割问题,需要增强图像对比度。这可以通过构造结构元素(如圆盘形状的结构元素`strel('disk',15)`),然后应用顶帽变换(`imtophat`)和底帽变换(`imbothat`)来实现。接着,使用`imsubtract`和`imadd`函数结合这两种变换的结果,以增强物体和背景的对比度。再通过`imcomplement`函数增强谷点,最后使用`imextendedmin`和`imimposemin`检测并标记谷点,从而进行更精确的分水岭变换。 通过以上步骤,可以实现对遥感图像的精细化分割,提高对地物识别的准确性和清晰度。在实验中,应确保使用合适的Matlab版本(如本例中的Matlab7.0),并在适宜的操作系统环境下(如Windows 7)进行。同时,实验报告的撰写也是重要的一环,它能展示实验过程、结果和理解。 分水岭算法是遥感图像处理中的有力工具,通过Matlab的实现,我们可以有效地提取和分析图像信息,为遥感影像的分类和分析提供强大的支持。理解并掌握这一算法,对于提升遥感数据的应用价值具有深远的意义。
2024-09-05 11:11:34 3.05MB matlab
1
《VC++2008图像增强分割程序》是一款基于Visual C++ 2008编写的软件,主要用于图像处理中的图像增强和图像分割任务。在图像分析与理解的课程学习中,这样的程序作为作业,可以帮助学生深入理解图像处理的基本原理和技术,并通过实际操作提升编程技能。 图像增强是图像处理中的一个重要环节,它主要目的是改善图像的视觉效果,提高图像的可读性和后续处理的性能。在这个程序中,采用了线性变换算法来实现图像增强。线性变换通常包括直方图均衡化、灰度拉伸等方法,通过调整图像像素的灰度级分布,使图像的亮部和暗部细节更加明显,从而改善图像的整体对比度。例如,直方图均衡化可以扩大图像的灰度动态范围,使图像的亮区和暗区都得到充分展现,这对于增强图像的视觉效果非常有效。 图像分割则是将图像中具有不同特征或意义的区域分离出来,它是图像分析和理解的基础步骤。Sobel算子是一种常用的边缘检测算法,它属于梯度算子的一种,能有效地检测图像中的边缘。Sobel算子通过计算图像的水平和垂直方向的梯度强度,然后进行合成,找出梯度值较大的像素点,这些点通常对应于图像的边缘。该程序运用Sobel算子对图像进行处理,可以准确地识别并标记出图像的边缘,为后续的图像分析提供基础数据。 在《vc++2008图像增强分割程序》中,包含的文件"iauZuoye.sln"是一个Visual Studio解决方案文件,用于管理和构建整个项目。"pic"可能是一个包含待处理图像的文件夹,用户可以将自己感兴趣的图像放入其中,然后通过程序进行处理。"iauZuoye"可能是源代码文件,包含了实现图像增强和分割算法的具体代码。通过阅读和分析这个源代码,学习者可以深入理解线性变换算法和Sobel算子的工作原理,以及如何在VC++环境下实现它们。 这个程序不仅是一个实用的图像处理工具,更是一个生动的教学案例,对于学习和掌握VC++编程、图像处理理论以及实际应用技巧都有着极大的帮助。通过实践这个程序,学生能够巩固理论知识,提升编程技能,为未来在图像分析与理解领域进行更深入的研究打下坚实的基础。
2024-07-15 16:57:56 53KB vc++ 图像增强 图像分割
1
现成源文件,更改图像可直接使用,VC++的源代码比较多,如果有自己编程的可以只取其中一部分即可。
2024-07-15 16:54:19 2.65MB 图像分割
1
在图像处理领域,VC++是一种常用的编程语言,它结合了强大的MFC(Microsoft Foundation Classes)库,能够方便地实现各种图像处理任务。本项目聚焦于图像的分割与灰度处理,利用GDI(Graphics Device Interface)图形设备接口,这是一种Windows操作系统下的标准绘图工具,可以高效地处理图像数据。 我们要理解“图像分割”。图像分割是图像分析的关键步骤,它将图像划分为多个区域或对象,每个区域具有相似的特性,如颜色、纹理或亮度。在VC++中,可以使用不同的算法来实现,如阈值分割、边缘检测(如Canny算法)、区域生长等。这个项目可能采用了阈值分割,通过设定一个阈值来区分图像中的前景和背景,从而达到分割目的。 接着,是“灰度处理”。灰度处理是将彩色图像转换为单色图像的过程,每个像素由一个灰度级表示,通常是一个0到255的整数值,代表从黑色到白色的渐变。在VC++中,可以使用OpenCV库或者其他自定义函数来实现灰度转换,例如将RGB三通道颜色值取平均得到灰度值。 在这个项目中,代码会统计出黑色像素点的数量。这可能是通过遍历图像矩阵,检查每个像素的灰度值是否低于某个阈值(如0,代表黑色),然后计数。这个统计信息对于分析图像的构成或者进行后续的图像分析很有用。 接下来,我们讨论绘制出的4幅图: 1. 原图:保持图像原始的颜色和亮度信息,用于对比处理后的效果。 2. 分割图:显示了图像分割的结果,不同的区域可能有不同的颜色,便于观察物体或区域的分离。 3. 灰度分割图:结合了图像分割和灰度处理,所有像素只有一维的灰度信息,但仍然保留了分割的效果。 4. 比例图:可能是图像中黑色像素点的分布比例,或者用图形表示黑色像素点占总像素的比例,帮助理解图像的黑白分布情况。 GDI的使用简化了这些图像的绘制过程,开发者可以通过创建位图对象、选择画刷和画笔、设置颜色、以及调用DrawBitmap等函数来绘制图像和图形。 通过下载和学习此源代码,你可以深入理解VC++如何结合GDI进行图像处理,包括基本的图像读取、像素操作、图像显示,以及如何实现特定的图像处理算法。这对于提升你的图像处理技能,特别是使用VC++和GDI进行开发的能力,有着显著的帮助。同时,这也是一个很好的实践案例,教你如何将理论知识应用到实际项目中,进一步巩固和扩展你的编程技巧。
2024-07-15 16:50:40 653KB VC++ 图像分割 灰度处理
1
基于深度学习的医疗图像分割综述 深度学习技术的崛起为医疗图像处理带来了革命性的变革,尤其是在图像分割领域。本次综述将对基于深度学习的医疗图像分割技术进行详细的介绍和分析。 医疗图像分割的应用 医疗图像分割技术可以帮助医生更准确地诊断病情,进行更精确的手术导航,以及开展其他重要的医学应用。医疗图像分割的应用包括: 1. 医学影像诊断:在医学影像诊断中,图像分割技术可以帮助医生将图像中的病变区域与正常组织区分开来,从而提高诊断的准确性。例如,CT扫描中的肿瘤分割,X光中的肺炎分割等。 2. 手术导航:在手术导航中,医生可以使用图像分割技术来创建3D模型,以便在手术过程中更好地理解患者内部的结构。这可以帮助医生更精确地定位病变区域,并提高手术效率。 3. 病理分析:在病理分析中,图像分割技术可以帮助医生将组织样本分成不同的区域,以便更好地理解疾病的发展过程和治疗效果。 深度学习模型概述 深度学习模型是基于深度学习的医疗图像分割技术的核心。常见的深度学习模型包括: 1. U-Net:U-Net是最常用的医疗图像分割模型之一。它是一个全卷积网络(FCN)的变种,具有一个收缩路径(编码器)和一个扩展路径(解码器),形状像字母“U”。U-Net能够捕获图像的上下文信息和位置信息,具有良好的空间一致性。 2. ResNet:ResNet是一种残差网络,通过引入残差块来帮助模型更好地学习和表示图像特征。ResNet的引入提高了模型的表达能力和泛化性能,使得模型能够更好地处理复杂的医疗图像数据。 3. EfficientNet:EfficientNet是一种新型的神经网络架构,旨在平衡模型的大小、性能和精度。它通过改变网络结构,使用更少的计算资源来达到更好的性能。在医疗图像分割中,EfficientNet具有广泛的应用前景。 4. Transformer:Transformer模型在自然语言处理领域取得了巨大成功。由于其具有全局信息交互的能力,Transformer也被引入到图像分割任务中。例如,ViT(Vision Transformer)就被应用于医疗图像分割任务中,取得了较好的效果。 训练和优化方法 训练和优化方法是基于深度学习的医疗图像分割技术的重要组成部分。常见的训练和优化方法包括: 1. 数据增强:由于医疗图像数据集通常较小,为了提高模型的泛化性能,通常会使用数据增强技术来扩充数据集。这包括旋转、缩放、裁剪、翻转等操作。 2. 损失函数:在训练过程中,损失函数被用来衡量模型的预测结果与真实标签之间的差距。常用的损失函数包括交叉熵损失、Dice损失、IoU损失等。 3. 优化算法:常见的优化算法包括随机梯度下降(SGD)、Adam、RMSProp等。这些算法可以帮助我们调整模型的参数,以最小化损失函数。 挑战和展望 基于深度学习的医疗图像分割技术仍然面临着许多挑战和挑战。例如,医疗图像数据集的获取和标注、模型的泛化性能、计算资源的限制等。然而,基于深度学习的医疗图像分割技术也展望了广泛的应用前景,例如医学影像诊断、手术导航、病理分析等。
2024-07-09 16:00:15 2.4MB
1
无监督医学图像分割 刘立豪,当归I阿维莱斯·里维罗和卡罗拉·比比亚恩·舍恩利布。 介绍 在此存储库中,我们提供了的PyTorch实现。 要求 火炬1.5.0 火炬视觉0.4.2 SimpleITK 1.2.4 opencv-python 4.2.0.32 用法 克隆存储库: git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git cd unsupervised-medical-image-segmentation 下载LPBA40数据集的图像和分割蒙版: LPBA40图片: LPBA40标签: 将它们解压缩到文件夹datasets/LPBA40 : datasets/LPBA40/LPBA40_rigidly_registered_pairs data
2024-06-17 17:50:56 114KB Python
1
基于深度学习的果蔬图像分割和特征识别研究__水果图像识别论文毕业设计范文.pdf
2024-06-07 17:23:07 4.14MB 毕业设计 毕业论文 毕业答辩
1
基于粒子群算法的进化聚类图像分割目标函数:使用距离度量测量的簇内距离图像特征:3个特征(R,G,B值) 它还包含一个基于矩阵的示例,输入样本大小为 15 和 2 个特征
2024-05-30 17:17:28 7KB matlab
1
其中包括(600张以上的细胞核图像分割数据集,为医疗图像人工智能等从事者提供数据集,包括json格式和coco格式的标注)
2024-05-28 17:36:08 12.74MB 数据集 人工智能 json
1