内容概要:本文围绕扩散模型在图像生成中的应用实践,系统介绍了其在毕业设计中的可行性与实施路径。文章涵盖扩散模型的核心概念如前向扩散与反向去噪过程、U-Net架构、条件控制机制,以及关键技术如噪声调度、Classifier-Free Guidance、混合精度训练和EMA权重稳定方法。通过PyTorch实现的简化版DDPM代码案例,展示了模型训练全流程,包括网络结构设计、噪声注入、损失计算与优化过程,并指出其在MNIST数据集上的实现基础及向更复杂数据集扩展的可能性。同时探讨了扩散模型在艺术创作、医学影像合成、虚拟现实等领域的应用场景,并展望了高效采样、跨模态融合、轻量化部署和个性化生成等未来方向。; 适合人群:计算机视觉、人工智能及相关专业,具备一定深度学习基础的本科或研究生阶段学生,尤其适合将扩散模型作为毕业设计课题的研究者; 使用场景及目标:①理解扩散模型的基本原理与实现流程,完成从理论到代码落地的完整实践;②基于简化模型进行改进,探索不同噪声调度、损失函数或条件控制策略对生成效果的影响;③拓展至实际应用场景,如文本到图像生成、医学图像合成等方向的毕业设计创新; 阅读建议:此资源以项目驱动方式帮助读者掌握扩散模型核心技术,建议结合代码逐行调试,深入理解每一步的数学原理与工程实现,并在此基础上进行功能扩展与性能优化,从而形成具有创新性的毕业设计成果。
2025-12-13 19:04:06 20KB 扩散模型 PyTorch U-Net 图像生成
1
内容概要:该开源代码实现了一个基于Python的自动化工具,用于与“豆包”AI平台进行交互,支持文生图和图生图两大功能。程序通过Selenium控制Chrome浏览器模拟用户操作,在豆包聊天界面中自动输入提示词、上传参考图像、触发AI绘图并下载生成的图片。系统具备图形化界面(GUI),允许用户配置生成参数如图片数量、循环次数、超时时间、图片比例及固定后缀等,并支持多轮批量处理和断点续传。代码还集成了错误重试机制、日志记录、文件管理及浏览器驱动自动控制等功能,提升了稳定性和易用性。; 适合人群:具备一定Python编程基础,熟悉GUI开发、自动化脚本及网络爬虫技术的开发者或AI绘画爱好者;适合希望深入理解Selenium自动化与AI接口集成的技术人员。; 使用场景及目标:①实现对豆包AI文生图/图生图功能的批量自动化调用;②研究如何通过Selenium模拟复杂网页交互流程;③构建可扩展的AI绘图自动化框架,支持任务持久化与异常恢复; 阅读建议:此资源以实际项目形式展示了自动化工具的完整架构设计,建议结合代码运行环境进行调试分析,重点关注多线程控制、元素定位策略、下载文件监控及状态恢复机制的实现细节。 selenium结合chromedriver实现豆包批量自动化AI文生图和图生图并自动保存功能, 图片保存到image目录下,参考图可选单文件或文件夹批量图生图。 提示词一行一个,可批量循环。 python源码如下,分享给大家。请自行打包成exe, 注意对应版本的chromedriver.exe放到chromedriver目录下,谷歌浏览器自行下载安装。 不足之处请各位前辈多多指正。【转载请注明出处】
2025-11-25 23:27:58 100KB Python Selenium 图像生成 自动化脚本
1
### 基于PyTorch框架的变分自编码器(VAE)图像生成项目 #### 项目简介 本项目是一个基于PyTorch框架实现的变分自编码器(VAE)项目,专注于图像生成和重建任务。VAE是一种生成模型,通过学习数据的潜在分布来生成新的数据样本。本项目使用自制数据集进行训练,数据集中包含中间有一条不规则黑线的图像。 #### 项目的主要特性和功能 1. 数据处理 使用自制数据集,数据集中包含中间有一条不规则黑线的图像。 数据集处理包括加载和预处理图像数据。 2. 模型架构 编码器连续使用卷积层、批量归一化和LeakyReLU激活函数(CBL)来学习图像特征。 重参数化对学习的特征进行正态分布采样。 解码器使用反卷积层、批量归一化和LeakyReLU激活函数(DCBL)将采样后的数据还原回原图。 3. 效果展示 重建效果展示了模型对输入图像的重建效果,图像质量较高。
2025-11-10 10:31:49 683KB
1
内容概要:本文介绍了基于FPGA的实时语音生成图像系统的设计与实现。该系统旨在为听障人士和婴幼儿提供一种全新的、直观的声音感知方式,通过FPGA实现语音信号的采集和传输,并在PC端完成语音识别和图像生成。系统的核心模块包括语音采集、I2C总线配置、异步FIFO、UART串口通信、PC端数据接收与音频恢复、离线语音识别和实时图像生成。语音采集模块使用WM8731音频编解码芯片进行模数转换,I2C总线用于配置WM8731的寄存器,异步FIFO解决跨时钟域数据传输问题,UART模块负责数据传输,PC端通过串口接收数据并恢复音频,使用Vosk离线语音识别模型将语音转换为文本,再调用火山方舟的seedream-3-0模型API生成图像。 适合人群:对FPGA技术有一定了解,从事电子信息系统开发的技术人员,特别是关注助听设备和教育辅助工具的研发人员。 使用场景及目标:①实现语音信号的实时采集、传输和处理;②为听障人士和婴幼儿提供直观的声音感知方式;③推动FPGA技术在语音信号处理领域的应用,探索其在实时性、精度和功耗等方面的优化潜力;④为相关领域的技术进步和发展提供技术支持。 其他说明:该系统不仅为听障群体和婴幼儿提供便捷有效的辅助工具,还在教育、医疗、娱乐等领域具有广泛应用前景。通过该系统的实现,展示了FPGA在复杂信号处理任务中的优势,为未来的技术创新和应用提供了新的思路和方法。
2025-09-25 13:14:24 2.98MB FPGA 语音识别 图像生成 WM8731
1
基于wasserstein生成对抗网络梯度惩罚(WGAN-GP)的图像生成模型 matlab代码,要求2019b及以上版本 ,基于Wasserstein生成对抗网络梯度惩罚(WGAN-GP); 图像生成模型; MATLAB代码; 2019b及以上版本。,基于WGAN-GP的图像生成模型Matlab代码(2019b及以上版本) 生成对抗网络(GAN)是深度学习领域的一个重要研究方向,自从2014年Ian Goodfellow等人提出以来,GAN已经取得了许多显著的成果。GAN的核心思想是通过一个生成器(Generator)和一个判别器(Discriminator)相互竞争的过程,来学习生成数据的分布。生成器的任务是生成尽可能接近真实数据的假数据,而判别器的任务则是尽可能准确地区分真数据和假数据。 Wasserstein生成对抗网络(WGAN)在GAN的基础上做出了改进,它使用Wasserstein距离作为目标函数,这使得训练过程更加稳定,并且能够生成质量更高的数据。WGAN的核心思想是用Wasserstein距离来衡量两个概率分布之间的距离,这样做的好处是可以减少梯度消失或梯度爆炸的问题,从而使训练过程更为稳定。此外,WGAN还引入了梯度惩罚(Gradient Penalty)机制,即WGAN-GP,进一步增强了模型的性能和稳定性。 在图像生成领域,WGAN-GP的应用非常广泛,它可以用来生成高质量和高分辨率的图像。例如,它可以用于生成人脸图像、自然风景图像、艺术作品等。这些生成的图像不仅可以用于娱乐和艺术创作,也可以用于数据增强、模拟仿真、图像修复等领域。 本篇文档涉及到的Matlab代码,是实现基于WGAN-GP图像生成模型的一个具体工具。Matlab作为一种编程语言,尤其适合进行算法的原型设计和研究开发,它提供了丰富的数学计算库和数据可视化工具,使得研究者能够快速实现复杂的算法,并且直观地观察结果。文档中提到的Matlab代码要求2019b及以上版本,这主要是因为2019b版本的Matlab增强了对深度学习的支持,包括提供了更加强大的GPU加速计算能力,以及对最新深度学习框架的支持。 文件压缩包中还包含了技术分析报告和一些图片文件。技术分析报告可能详细介绍了基于生成对抗网络梯度惩罚的图像生成模型的原理、结构、算法流程以及实现细节。而图片文件可能包含模型生成的一些示例图像,用于展示模型的生成效果。 大数据标签的添加表明,这项研究和相关技术可能在处理大规模数据集方面具有应用潜力。随着数据量的不断增加,大数据分析技术变得越来越重要,而在大数据环境下训练和应用WGAN-GP图像生成模型,可以提升模型对于真实世界复杂数据分布的学习能力。 此外,随着计算能力的提升和算法的优化,WGAN-GP图像生成模型的训练效率和生成质量都有了显著提高。这使得它在图像超分辨率、风格迁移、内容创建等多个领域都有广泛的应用前景。通过不断地研究和开发,基于WGAN-GP的图像生成技术有望在未来的图像处理和计算机视觉领域中发挥更加重要的作用。
2025-07-06 18:48:13 2.51MB
1
内容概要:本报告系统地分析了2023年人工智能(AI)生成内容(AIGC)在图像生成领域的最新进展和技术趋势。内容涵盖了几种主流的图像生成模型如GANs、Diffusion Models和CLIP的应用及其技术特点,探讨了它们在图像合成、文本到图像转换、风格迁移等具体任务中的表现。同时,对市场现状、未来发展方向以及潜在挑战进行了深入剖析。 适合人群:从事图像处理、机器学习、深度学习等领域研究和开发的专业人士,以及对AI生成内容感兴趣的科技从业者。 使用场景及目标:本文适用于希望了解当前图像生成技术的研究动态和发展趋势的人士,可用于指导相关技术的研究和实际应用项目的设计。 阅读建议:本报告全面覆盖了AIGC在图像生成方面的技术细节和应用场景,建议重点阅读各主要模型的工作原理和案例分析部分,结合自身的业务需求进行深入理解。
2025-06-08 17:04:51 1.65MB Diffusion Models CLIP 图像生成
1
主界面为2D显示,包含深度数据生成的灰度与彩色图像,例如激光轮廓仪的CSV数据,还有轮廓线测量工具。子界面为3D显示,深度数据生成的3D图像,包含PLY文件等的可以打开。只是个显示工具展示,没有太多功能,就上面说的这些。
2025-03-18 15:28:32 111.98MB WPF
1
这是一款利用HTML5 Canvas来模拟三角函数sin图像生成原理,非常直观。随着左侧圆形转动对应的绘制出三角函数sina的正玄函数曲线图像。
2023-04-09 16:49:05 2KB html5 canvas
1
今天给大家带来一个文本生成图像的案例。让大家都成为艺术家,自己电脑也能生成图片 ,该模型它能让数十亿人在几秒钟内创建出精美的艺术。 Stable Diffusion模型包括两个步骤: 前向扩散——通过逐渐扰动输入数据将数据映射到噪声。这是通过一个简单的随机过程正式实现的,该过程从数据样本开始,并使用简单的高斯扩散核迭代地生成噪声样本。此过程仅在训练期间使用,而不用于推理。 参数化反向——撤消前向扩散并执行迭代去噪。这个过程代表数据合成,并被训练通过将随机噪声转换为真实数据来生成数据。
2023-04-05 16:25:07 1.33MB 深度学习 图像生成
1
在医疗领域,许多疾病的诊断依赖高倍数显微镜对细胞等微观物体的观测,但由于高倍数显微镜价格昂贵,操作复杂,且高倍数细胞显微图像重建工作存在低、高倍数显微图像之间图片风格不统一、细胞图像清晰度不致和训练数据不匹配等问题。为此,提出高倍数细胞显微图像生成式对抗网络。将全新激活函数引入Cyclean网络,在生成器中添加新的残差密集块并去掉BN层。同时为确保生成图像真实可信,在生成器训练过程中考虑细节感知损失。实验结果表明,该方法在保留低倍数显微图像基本信息的基础上,能够对高倍数显微图像细节进行有效的还原。
2023-03-29 10:28:32 3.22MB 显微镜网络图像
1