睡岗检测是一项通过计算机视觉技术进行的监控任务,目的是识别工作或驾驶场合中因疲劳而睡着的人员。睡岗检测数据集VOC+YOLO格式共有1198张图像,这些图像均属于同一个类别,即“sleep”。该数据集适用于需要对人类睡岗行为进行识别和警示的场合。 数据集采用的是Pascal VOC格式和YOLO格式两种标注方式。Pascal VOC格式是一种广泛使用的标注格式,包含图像文件、XML文件和标注信息。XML文件详细记录了标注的对象,包括标注的类别和位置信息等。而YOLO格式则通常包含一个文本文件,里面记录了与图像对应的标注信息,主要采用中心点坐标和宽高信息来表示物体的位置和大小。 在数据集中,每张jpg格式的图片都有对应的VOC格式XML文件进行标注,以及YOLO格式的txt文件。这些标注文件记录了所有图片中“sleep”类别的标注情况。数据集中共有1198个标注框,每个框均标记为“sleep”类别,表明每个标注框都表示一个人在睡岗的状态。 制作本数据集使用的标注工具是labelImg,这是一个在计算机视觉领域非常流行的图像标注软件。在标注过程中,遵循特定的规则,即对每一个需要检测的睡岗人员都使用矩形框进行标注。数据集的重要说明部分暂时为空,没有特别的标注规则或者注意事项。本数据集特别指出,不对使用该数据集训练模型的精度作任何保证,但数据集本身提供了准确且合理的标注。 数据集的适用场景包括但不限于工业安全监控、交通运输监测等场合。在这些场合中,通过实时监控和分析视频流,系统能够自动检测出是否有人因疲劳而睡着,从而可以及时发出警告,预防可能的安全事故。 为了更深入地了解数据集的细节,用户可以预览图片,以及查看具体的标注例子。通过预览和例子,研究者和开发者能够获得数据集质量和标注准确性的真实感受,以判断其是否满足项目需求。 在实际应用中,数据集需要配合深度学习框架和模型进行训练。以YOLO(You Only Look Once)为例,这是一种流行的目标检测算法,因其速度快、准确度高而受到青睐。VOC格式则可用于训练如SSD、Faster R-CNN等其他主流目标检测模型。在训练过程中,训练数据集将指导模型学习如何识别图像中的睡岗行为。 总结而言,睡岗检测数据集VOC+YOLO格式提供了1198张经过精准标注的图像资源,可供开发者用于机器学习项目,特别是那些需要在特定环境下检测睡岗行为的应用开发。利用该数据集,可以训练出具有较高准确率的睡岗检测模型,从而提高工作场合的安全性。使用前应自行评估数据集是否满足具体需求,并了解使用该数据集可能存在的风险和责任。
2025-08-30 15:52:40 2.03MB YOLO 图像数据集 格式转换
1
高光谱图像数据集是包含高光谱图像信息的集合,这些图像数据集广泛应用于遥感、农业、地质勘探、环境监测等多个领域。高光谱成像技术是一种可以获取物体反射或发射光谱信息的高分辨率光谱成像技术。它能够捕捉到从可见光到近红外或短波红外波段范围内成百上千的连续窄波段图像,每个波段对应于光谱的一个特定波长。与传统的多光谱图像相比,高光谱图像具有更高的光谱分辨率,因此能够提供更为丰富和详细的物体表面或内部的材料组成信息。 高光谱图像数据集的建立通常需要经过复杂的采集和预处理过程,包括从成像系统获取原始图像数据、校正图像数据中的畸变、对图像进行大气校正、去除噪声、进行光谱重采样等步骤。这些数据集通常包含了丰富的地面真实信息,是进行图像分析、分类、目标识别和提取等研究的重要基础资源。研究人员可以通过分析这些数据集中的光谱特征,结合地物光谱库进行比较,识别出图像中的不同地物类型,如植被、水体、土壤、建筑物等。 在处理高光谱图像数据集时,常用的算法包括主成分分析(PCA)、独立成分分析(ICA)、最小噪声分离(MNF)、支持向量机(SVM)、随机森林等。这些算法旨在降低数据的维度,提取有效的特征,实现对图像的有效分类和识别。同时,随着机器学习和深度学习技术的发展,基于卷积神经网络(CNN)的图像处理方法也被广泛应用于高光谱图像的特征提取和目标检测中。 高光谱图像数据集的典型应用场景包括农作物的种植监测、资源勘探、土地利用分类、环境影响评估等。例如,在农业领域,高光谱图像能够通过分析作物的反射光谱来评估作物的健康状况和养分含量,辅助农民进行精准农业管理。在资源勘探中,通过高光谱图像可以探测地下矿藏的分布情况。在环境监测中,可以用于监测污染物的扩散情况和生态系统的健康状况。 为了提高高光谱图像数据集的质量和应用价值,研究者还在不断探索如何将高光谱成像技术与其他传感器技术结合起来,例如与激光雷达(LiDAR)技术的融合,可以提供更为准确的地物三维信息。同时,随着空间分辨率和光谱分辨率的不断提高,高光谱图像数据集也在变得越来越大,这对数据存储、传输和处理技术提出了更高的要求。 高光谱图像数据集的研究和应用不仅推动了遥感科学的发展,也为地球科学、农业科学、环境科学、材料科学等众多学科提供了强大的数据支持和分析工具。随着技术的进步,高光谱图像数据集的采集和应用将会更加广泛和深入,其在科学研究和实际应用中的重要性也将不断增长。
2025-08-19 16:19:04 342.06MB 高光谱图像 Hyperspectral
1
在本文中,我们将深入探讨如何在QT环境下利用大恒相机的SDK进行图像数据的采集,并将其转换为Halcon图像格式进行显示。这个过程涉及到多个关键的技术点,包括QT框架的应用、大恒相机SDK的集成以及Halcon图像处理库的使用。 QT是一个流行的开源跨平台应用程序开发框架,用于构建图形用户界面(GUI)应用程序。QT5.9是该框架的一个版本,支持多种编程语言,包括C++,并且与MSVC2017(Microsoft Visual C++ 2017)编译器兼容,这使得开发者可以在Windows平台上方便地构建和运行应用程序。 大恒相机作为工业视觉领域的一个知名供应商,提供了专门的SDK(Software Development Kit)供开发者集成到自己的应用中,以便控制和获取相机的图像数据。SDK通常包含必要的库文件、头文件、示例代码和文档,帮助开发者快速理解如何与相机硬件进行交互。 Halcon是德国MVTec公司开发的强大的机器视觉软件,它提供了丰富的图像处理函数,如形状匹配、模板匹配、OCR等,广泛应用于自动化生产线、质量检测等领域。将大恒相机的图像数据转换为Halcon可识别的格式,可以充分利用Halcon的功能进行后续的图像分析和处理。 实现这个Demo的步骤大致如下: 1. **集成大恒相机SDK**:需要将大恒相机SDK的库文件和头文件添加到QT项目中。这通常涉及设置项目的编译选项,确保链接器能够找到SDK的相关依赖。 2. **创建QT界面**:使用QT的图形界面元素,如QLabel或QGraphicsView,来展示相机采集的图像。同时,可能需要设计一些按钮或菜单项来触发图像采集和处理的操作。 3. **调用SDK进行图像采集**:通过SDK提供的API,编写C++代码来初始化相机,设置参数,然后开始图像采集。采集到的原始图像数据需要保存在内存中或本地文件,以备进一步处理。 4. **图像数据转换**:由于Halcon需要特定的图像格式,所以需要将大恒相机SDK返回的图像数据转换成Halcon能识别的格式。这通常涉及图像的像素格式转换、大小调整等操作。 5. **加载Halcon图像**:使用Halcon的`ReadImage`函数或类似接口,加载转换后的图像数据到Halcon环境中。 6. **显示Halcon图像**:通过Halcon的显示函数,如`DisplayImage`,在QT界面中显示处理后的图像。这可能需要自定义一个Halcon视图窗口,或者通过QT的图形视图框架将Halcon图像与QT界面结合。 7. **处理和分析图像**:根据实际需求,可以添加Halcon的图像处理功能,例如边缘检测、特征识别等,并将结果反馈到QT界面上。 8. **错误处理和调试**:确保程序包含了适当的错误处理机制,以便在相机连接问题、数据传输失败或Halcon处理错误时能够提供清晰的反馈。 这个Demo是一个基础的起点,展示了如何将相机硬件、中间件和机器视觉软件结合在一起,为更复杂的视觉应用奠定了基础。在实际项目中,可能还需要考虑性能优化、多相机同步、实时性要求等因素。通过不断学习和实践,开发者可以掌握更多关于QT、大恒相机SDK和Halcon的知识,以应对各种复杂的机器视觉挑战。
2025-08-16 16:34:19 10KB 大恒相机 Halcon
1
数据集是一个大规模的虹膜图像数据集,由中国科学院自动化研究所(CASIA)创建。该数据集包含来自 1000 名受试者的 20000 幅虹膜图像,每名受试者提供 20 幅图像。这些图像使用IKEMB-100 双眼虹膜相机采集,分辨率为 640×480 像素。数据集的特点:规模大:包含 1000 名受试者的虹膜图像,是首个公开的千人级虹膜数据集。图像质量高:使用先进的 IKEMB-100 相机采集,图像清晰,适合用于虹膜特征提取。多样性丰富:图像中存在多种类内变化,如眼镜佩戴、镜面反射等,增加了数据集的复杂性和实用性。虹膜识别算法研究:可用于开发和验证虹膜识别算法,包括图像预处理、特征提取、特征匹配等。分类与索引方法开发:适合用于研究虹膜特征的独特性,开发新的分类和索引方法。机器学习与深度学习:为深度学习模型(如卷积神经网络)提供丰富的训练数据,提升模型的准确性和鲁棒性。数据集为虹膜识别研究提供了宝贵的资源,帮助研究者深入探究虹膜特征的独特性和多样性,推动虹膜识别技术在生物特征识别领域的应用和发展。
2025-07-28 16:53:38 490.79MB 深度学习 机器学习 图像处理 计算机视觉
1
公开的船舶图像数据集,主要用于深度学习中的船舶分类任务。以下是该数据集的详细介绍:图像数量:数据集包含8932张船舶图像,其中6252张用于训练,2680张用于测试。船舶类别:数据集涵盖了五类船舶,分别是货船(Cargo)、军舰(Military)、航空母舰(Carrier)、游轮(Cruise)和油轮(Tankers)图像特点:图像拍摄于不同的方向、天气条件、拍摄距离和角度,涵盖了国际和近海港口[^3^]。图像格式包括RGB彩色图像和灰度图像,且图像像素大小不一。数据集通常被划分为训练集和测试集,比例为70:30。这种划分方式有助于模型在训练阶段学习到足够的特征,并在测试阶段评估模型的性能,该数据集主要用于船舶分类任务,通过深度学习模型对不同类型的船舶进行识别和分类。例如,有研究使用该数据集训练卷积神经网络(CNN)模型,以提高船舶分类的准确率。多样性:图像的多样性和复杂性使得该数据集能够有效模拟真实世界中的船舶识别场景。实用性:该数据集为研究人员提供了一个标准化的测试平台,用于开发和验证新的船舶分类算法。研究基础:该数据集已被用于多种深度学习模型的训练和评估,为船舶识别领域的研究提供了基础。是一个适合用于船舶分类研究的数据集,其多样性和丰富性使其成为深度学习领域中一个有价值的资源。
2025-07-04 13:34:29 80.9MB 机器学习 深度学习 图像处理
1
清洗了的红外行人检测数据集,其中包括2921个数据集,数据集的标签格式为YOLO格式,能够直接用于YOLO系列模型的训练。 图像数据 全部相关数据集介绍链接: https://blog.csdn.net/weixin_49824703/article/details/147150512?spm=1001.2014.3001.5502 在当今的人工智能研究领域中,计算机视觉扮演着至关重要的角色,尤其是在物体检测、人脸识别、行人检测等方面。此次分享的“IR4红外光人体检测数据集-YOLO格式-图像数据(2/2)”便是一个专门为红外行人检测设计的数据集,涵盖了2921个经过清洗的数据样本,这对于研究者和开发者来说无疑是一大福音。 这个数据集采用了YOLO(You Only Look Once)格式作为标注形式。YOLO是一种流行的目标检测算法,其模型能够在单次的前向传播中迅速准确地识别图像中的多个对象,这在实时监控和安全防范领域尤为关键。由于YOLO算法的高效性,它已被广泛应用于自动驾驶、视频监控、工业检测等多个领域。 数据集中的每一个图像样本都标记了人体的位置,具体到在图像中所占的区域。这种细致的标签工作使得数据集可以被直接用于YOLO系列模型的训练,从而极大地提升了模型训练的效率。研究者无需从零开始准备数据,可以节省大量的时间和资源,将更多的精力投入到模型的优化和算法的研究上。 值得注意的是,虽然数据集的主要应用场景是红外光人体检测,但它同样适用于更广泛的红外图像处理。红外成像技术在夜间或低照度环境中具有显著优势,能够捕捉到人类肉眼难以辨识的信息,因此在军事侦察、夜视辅助驾驶等领域也有广泛的应用前景。 为了更好地理解数据集的构成和使用方法,数据集提供了一个相关的介绍链接。这个链接详细介绍了数据集的来源、用途以及如何下载和使用这些数据。通过这个链接,用户不仅能够获得数据集本身,还能获取到有关数据集使用方法的指导,这对于那些不熟悉YOLO格式或红外检测技术的研究者来说尤为重要。 这个红外光人体检测数据集是研究者在开发高效、准确的目标检测模型过程中的宝贵资源。通过使用这个数据集,开发者可以训练出在各种环境下都能稳定工作的检测模型,进而推动计算机视觉技术的发展和应用。
2025-06-26 16:39:12 779.87MB
1
清洗了的红外行人检测数据集,其中包括2921个数据集,数据集的标签格式为YOLO格式,能够直接用于YOLO系列模型的训练。 图像数据 全部相关数据集介绍链接: https://blog.csdn.net/weixin_49824703/article/details/147150512?spm=1001.2014.3001.5502 随着计算机视觉技术的发展,红外光行人检测成为了热门的研究领域。红外光由于其在低光照或夜间条件下的优越性能,使得基于红外图像的行人检测技术在安全监控、自动驾驶等应用中具有重要的实用价值。YOLO(You Only Look Once)模型作为当前流行的实时目标检测算法之一,它的高效性和准确性使得其成为诸多领域的首选。此次介绍的IR4红外光人体检测数据集,便是专门为YOLO系列模型训练而设计的。 该数据集包含了2921个红外图像样本,这些样本均经过清洗,去除了不必要的噪声和干扰因素,保证了数据的纯净性和高质量。数据集的标签格式符合YOLO模型的要求,即每个图像文件都配备有一个与之对应的标注文件,文件中用特定的格式记录了图像中行人位置的坐标和类别信息。这使得数据集可以直接用于YOLO模型的训练和验证,极大地提高了研究者的工作效率,缩短了模型开发的周期。 数据集中的每个图像文件均以"IR4_"为前缀,后接具体的序列号,如IR4_20250328_002512.png等,这样的命名方式有助于快速识别和管理大量的图像数据。每个图像文件均对应一个红外场景,通过红外摄像头拍摄得到,图像中的人体在热成像下以特定的颜色或亮度呈现,而背景则相对暗淡,这为行人检测提供了清晰的对比。 在使用该数据集进行模型训练时,研究者首先需要将数据集下载并解压。每个图像文件对应一个标注文件,标注文件中详细记录了图像中所有行人的位置信息。YOLO模型会将这些标注信息作为训练的目标,通过不断地迭代和优化,使模型学会从红外图像中准确地识别出行人。由于YOLO模型具有较高的检测速度和良好的检测精度,因此在实际应用中,使用IR4红外光人体检测数据集训练出的模型能够有效地实现实时行人检测。 此外,数据集还提供了一个相关介绍链接,该链接详细介绍了数据集的来源、格式、使用方法等内容。通过链接中的介绍,研究人员可以更加深入地了解数据集的背景知识,以及如何高效地利用这些数据进行模型训练和性能评估。这对于那些希望在红外行人检测领域取得突破的研究者来说,是一个宝贵的学习资源。 IR4红外光人体检测数据集为机器学习和计算机视觉领域的研究者提供了一个宝贵的资源。它不仅包含了大量的高质量红外图像样本,还提供了与YOLO模型直接兼容的标签格式,极大地便利了模型的训练过程。随着技术的不断进步,此类专用数据集的开发将有助于推动红外行人检测技术的发展,为安全监控、自动驾驶等应用领域提供更加准确可靠的解决方案。
2025-06-26 16:37:51 676.63MB
1
该资源包包含用于基于HSV颜色的保险丝分类的完整Halcon例程代码和示例图像文件,代码实现了保险丝分类的具体功能,图像文件可用于代码的调试和测试。用户可以直接加载提供的资源运行代码,通过HSV颜色空间分析实现保险丝的分类功能,验证算法效果,快速掌握HSV颜色分类的实现原理与应用方法。资源完整,包含代码与图像,可直接运行,无需额外配置,非常适合学习与开发相关应用。 在当今工业自动化领域中,对零部件的快速准确分类是提高生产效率的关键环节。保险丝作为电路中的基础元件,其分类工作尤为重要。本文所述的资源包即为此类应用提供了解决方案,利用HSV颜色空间作为分类依据,采用Halcon这一机器视觉软件进行编程实现。 HSV颜色空间是基于人眼对颜色的感知方式而定义的颜色模型,其中H代表色调(Hue),S代表饱和度(Saturation),V代表亮度(Value)。与常见的RGB颜色空间相比,HSV更贴近人类对颜色的直观感受,因此在色彩相关的图像处理中应用更为广泛。 Halcon作为一套专业的机器视觉开发软件,拥有强大的图像处理功能和算法库,适用于复杂的图像分析任务。在这个资源包中,Halcon例程代码通过调用其内置的图像处理函数,将保险丝图像从RGB颜色空间转换到HSV空间,并利用HSV颜色特征实现保险丝的自动分类。 资源包提供的例程代码名为"color_fuses.hdev",是一份可以被Halcon软件直接打开和运行的脚本文件。该代码文件中包含了图像的读取、预处理、颜色空间转换、颜色区域分割、形态学操作、特征提取以及分类决策等关键步骤。开发者可以通过运行此代码,直观地观察到算法对不同颜色保险丝的分类效果,从而进行调试和参数优化。 此外,资源包还包括"技术资源分享.txt"文档,其中详细记录了例程代码的使用方法、代码段的解释以及可能遇到的问题和解决方案。这对于初学者而言,是一份宝贵的学习资料,能够帮助他们快速理解并掌握Halcon在保险丝分类中的应用。 "color"作为另一个文件列表中的条目,可能指的是资源包中包含的示例图像文件。这些图像文件可能包含了不同色调、饱和度和亮度的保险丝图像,用于验证代码的分类准确性。开发者可以使用这些图像对算法进行测试,确保算法能够在实际应用中准确识别和分类不同颜色的保险丝。 该资源包不仅提供了一套完整的Halcon分类例程代码,还包括示例图像和详细的技术文档,是学习和应用HSV颜色分类原理的宝贵资料。对于从事机器视觉、图像处理以及自动化检测的工程师或研究人员而言,这是一个难得的学习工具,能够有效地提升他们的工作效率和项目质量。
2025-06-04 20:20:41 980KB Halcon 图像数据集 图像处理
1
数据集介绍 数据介绍 基于血液的疾病的诊断通常涉及识别和表征患者的血液样本。检测和分类血细胞亚型的自动化方法具有重要的医学应用。 内容范围 该数据集包含12,500个血细胞增强图像(JPEG),并带有伴随的细胞类型标签(CSV)。每种4种不同的细胞类型大约有3,000张图像,这些图像分为4个不同的文件夹(根据细胞类型)。细胞类型是嗜酸性粒细胞,淋巴细胞,单核细胞和嗜中性粒细胞。该数据集伴随着一个附加数据集,该数据集包含原始410张图像(增补前)以及两个其他子类型标签(WBC与WBC),以及这410张图像(JPEG + XML元数据)中每个单元的边界框。更具体地说,文件夹“ dataset-master”包含410个带有子类型标签和边界框(JPEG + XML)的血细胞图像,而文件夹“ dataset2-master”包含2500个增强图像以及4个其他子类型标签(JPEG + CSV)。 探索方向 基于血液的疾病的诊断通常涉及识别和表征患者的血液样本。 检测和分类血细胞亚型的自动化方法具有重要的医学应用。
2025-06-03 13:54:33 109.05MB 数据集
1
旨在为机器学习和深度学习应用提供高质量的真实人脸和AI生成的人脸图像。这个数据集对于开发和测试能够区分真实和AI生成面部图像的分类器至关重要,适用于深度伪造检测、图像真实性验证和面部图像分析等任务。 该数据集精心策划,支持前沿研究和应用,包含了从多种“灵感”源(如绘画、绘图、3D模型、文本到图像生成器等)生成的图像,并通过类似StyleGAN2潜在空间编码和微调的过程,将这些图像转化为照片级真实的面部图像。数据集还包含了面部标志点(扩展的110个标志点集)和面部解析语义分割图。提供了一个示例脚本(explore_dataset.py),展示了如何在数据集中访问标志点、分割图,以及如何使用CLIP图像/文本特征向量进行文本搜索,并进行一些探索性分析。 数据集的四个部分总共包含了约425,000张高质量和策划的合成面部图像,这些图像没有隐私问题或许可证问题。这个数据集在身份、种族、年龄、姿势、表情、光照条件、发型、发色等方面具有高度的多样性。它缺乏配饰(如帽子或耳机)以及各种珠宝的多样性,并且除了头发遮挡前额、耳朵和偶尔眼睛的自我遮挡外,不包含任何遮挡。
2025-05-28 10:52:14 115.71MB 机器学习 图像识别
1