在图像处理领域,"图像分块"是一种常见的技术,它涉及到将一幅大的图像分割成多个较小的、相互独立的区域,这些区域被称为“图像块”或“像素块”。这种技术在许多应用中都有广泛的应用,比如图像压缩、图像分析、特征提取以及机器学习等。下面我们将深入探讨这一主题。 图像分块的基本原理是将图像按一定的行和列间隔划分,形成一个个大小相同的矩形区域。例如,如果图像的宽度和高度分别是\( W \)和\( H \),我们可以将其分割成\( M \times N \)个块,每个块的大小为\( \frac{W}{M} \times \frac{H}{N} \)。这种操作通常使用矩阵运算来实现,尤其是在编程语言如C中。 在C语言中,处理图像数据通常涉及以下步骤: 1. **图像读取**:我们需要一个库来读取图像文件,如OpenCV库,它可以方便地读取常见的图像格式(如JPEG、PNG等)。使用OpenCV,可以使用`cv::imread`函数读取图像到内存。 2. **数据结构**:图像数据通常以二维数组的形式存储,每个元素代表一个像素,包含红、绿、蓝(RGB)三个通道的值。在C中,可以使用二维字符数组或结构体数组来表示。 3. **分块操作**:通过循环遍历图像的行和列,每次取出一块,可以创建一个新的小数组或者结构体实例来保存这块的像素值。在C中,这可以通过两个嵌套的for循环实现,计算每个块的起始位置和结束位置,然后复制这些像素到新的数组。 4. **处理每个块**:一旦图像被分割成小块,就可以对每个块单独进行处理,如颜色空间转换、滤波、边缘检测等。这些处理可能针对每个像素执行,也可能涉及到块内的像素统计。 5. **结果整合**:处理完所有块后,将结果合并回原图大小的数组,可以使用类似的方法将处理后的块重新拼接起来。 6. **图像写入**:使用`cv::imwrite`函数将处理后的图像保存到文件。 在实际应用中,图像分块有很多优点,比如可以减少计算复杂性,便于分布式处理,同时也可以提高某些算法的性能,如图像编码和解码中的离散余弦变换(DCT)等。然而,它也存在一些挑战,比如块边界效应,可能会导致图像质量下降。 图像分块是图像处理中的一个重要技术,它在各种场景下都有着广泛的应用。通过熟练掌握C语言和相关的图像处理库,可以实现高效且灵活的图像分块处理程序。在学习过程中,理解图像数据的存储方式、分块算法的实现以及如何与特定的图像处理任务相结合,都是非常关键的。
2026-01-28 21:48:00 1011KB 图像处理
1
压缩感知理论在数据获取、数据存储/传输、数据分析和处理方面有很大优势,成为近年来的研究热点.考虑到大多数图像信号信息分布有差异,编码端,在对图像分块的基础上,融合熵估计和边缘检测方法计算各图像块的信息含量,再从两个不同的角度进行分类采样:依据信息量多少将图像块分为平滑、过渡和纹理3类,使用不同的采样率采样;依据信息量的分布特征,采用不同的采样率分配策略进行采样.在解码端,根据不同类型的图像块构造不同的线性算子进行重构,再运用改进的迭代阈值算法去除块效应和噪声.实验证明,算法在提升图像重构质量的同时缩短了重构时间,并且对纹理边缘多的图像的重构效果较其他方法理想.
1
基于图像分块加密算法实现图像加密python源码+算法流程图+项目说明文档.zip 基于图像分块加密算法实现图像加密python源码+算法流程图+项目说明文档.zip 基于图像分块加密算法实现图像加密python源码+算法流程图+项目说明文档.zip 【算法解析】 该算法整体思路是通过位平面和分块加密,嵌入信息,并且能够实现可以提取信息而不解密图像,不提取信息解密图像,以及同时获取信息和图像。 恢复图像原理是通过图像平整度去判定是否恢复到原图像,所以对于某些特殊图像,无法完全复现出原本图像。 【算法流程】 加密算法->嵌入算法->解密算法->提取算法->恢复(解密+提取)算法
基于分块的压缩感知算法适用于图像信号的处理,通过平滑迭代阈值投影法可以快速重构图像,但存在低采样率下重构图像质量较差的缺点。基于全变差分的分块压缩感知算法,在一定程度上能提升重构效果,但降低了运算速度。针对以上算法的不足,提出基于多尺度的自适应采样图像分块压缩感知算法。根据小波分解后不同层对重构结果影响所占权重不同的特性,自适应分配给每一层不同的采样率,并在重构时将平滑迭代阈值投影法应用到每一层的每一个子带的分块上。实验结果表明,与传统的迭代阈值投影法相比在重构质量上提高了1~3 dB,在重构速度上与迭代阈值投影法相当并优于全变差分法。
2022-12-09 20:48:10 289KB 压缩感知
1
: 设计了一种基于图像分块的 LDA(linear discriminant analysis)人脸识别方法, 该方法从模式的原始数字图像出发, 先对 图像矩阵进行分块,然后对分块子图像进行 LDA 特征提取,从而得到能代替原始模式的低维新模式,最后再用最小距离分 类器进行分类。该方法克服了传统 LDA 方法的缺点, 其优点是能有效地提取图像的局部特征。实验表明: 该方法在识别性 能上优于 Fisherfaces方法。
2022-11-15 10:41:49 231KB 基于图像分块的LDA人脸识别
1
针对现有计算机视觉对交通路标识别的复杂性和不稳定性的问题,通过运用图像轮廓识别技术,提出了由全局特征到局部特征再到结构特征的多层次轮廓识别,在交通路标的识别过程中,分别构造了图像密度、形状度量、光滑程度和轮廓熵值4个层次的图像轮廓,同时结合Sobel算子和信息熵对交通路标图像进行了提取与分块处理。通过实验仿真结果表明:在图像的提取过程中,交通路标图像随着其DMOS值的增大,图像的质量越差,清晰度越低,其NRSS值越小;在图像的识别过程中,低通滤波器的大小设置为7×7,原图NRSS为0.7654,形状度量为1.3和2.4时,NRSS分别为0.3712和0.2667。这种层次化的轮廓分析在路标的识别上具有较好的稳健性。
1
基于HSV颜色空间的图像分块聚类,曾璐,黄朝兵,论文提出了一种将聚类和区域生长有机融合的彩色图像分割方法。为了捕获图像的纹理特征, 首先将图像划分成 16×16 子块, 然后在块中按
2022-04-08 11:25:38 245KB 彩色图像分割
1
mfc对话框输入一个阈值,对灰度影像(大影像)进行二值化,主要利用已经编译好的gdal2.0库进行图像分块读入、处理及输出
2022-01-30 11:27:04 86.73MB gdal
1
将图像进行分块,充分应用与数字水印技术当中
2021-12-26 17:26:52 2KB 水印 图像分块
1
使用matlab语言实现对图像的分块显示,压缩包中有图片和代码,可以走直接运行
2021-12-14 10:46:08 276KB matlab  代码 图像分块
1