支持向量机(Support Vector Machine, SVM)是一种监督学习模型,尤其在模式识别和回归分析领域表现出色。在本主题中,"SVM识别基于SVM的滚动轴承故障状态识别方法",我们主要探讨如何利用SVM技术来诊断滚动轴承的健康状况。 滚动轴承是机械设备中的关键组件,其故障可能导致设备性能下降甚至严重损坏。因此,早期发现并识别滚动轴承的故障状态至关重要。SVM通过构建最优分类超平面,能够有效地处理小样本、非线性和高维数据,这使得它成为滚动轴承故障识别的理想工具。 在实际应用中,首先需要收集滚动轴承的振动信号数据。这些数据通常由传感器捕获,包含了轴承的状态信息。然后,通过预处理步骤(如滤波、降噪和特征提取)将原始信号转化为可用于分析的特征向量。常用的特征包括时域特征(如均值、方差、峭度等)、频域特征(如峰值、能量谱、峭度谱等)以及时间-频率域特征(如小波分析或短时傅里叶变换)。 接下来,我们将这些特征向量输入到SVM模型中进行训练。SVM的核心在于寻找最大边距的分类边界,即最大化正常状态与故障状态样本之间的间隔。这个过程涉及到选择合适的核函数,例如线性核、多项式核、高斯核(RBF)等。RBF核通常在非线性问题中表现优秀,适合复杂的故障模式识别。 在训练完成后,我们可以用该模型对新的振动信号进行预测,判断滚动轴承是否处于故障状态。为了评估模型的性能,通常会采用交叉验证、混淆矩阵、准确率、召回率、F1分数等指标。此外,针对多类故障识别,可能还需要采用一对多或多对多的策略。 MATLAB是一个广泛用于SVM建模的平台,提供了完善的工具箱和函数支持。用户可以通过调用`svmtrain`和`svmpredict`函数实现SVM的训练和预测。在文件"5.6SVM"中,可能包含了使用MATLAB实现SVM滚动轴承故障识别的代码示例、数据集以及结果分析。 基于SVM的滚动轴承故障状态识别方法通过高效的数据处理和模式识别,为机械系统的健康管理提供了一种有效手段。它不仅可以预防不必要的停机和维修成本,还能提高整体设备的可靠性和生产效率。随着深度学习和大数据技术的发展,SVM与其他先进技术的结合有望进一步提升故障识别的精度和实时性。
2025-04-16 15:55:11 53.9MB 支持向量机 故障识别 滚动轴承
1
针对轴承振动信号非线性、非平稳性和故障特征微弱性的特点,以及工程实际中难以获得大量故障样本的情况,提出了一种基于多尺度排列熵和支持向量机的轴承故障诊断新方法。该方法首先对轴承不同运行状态下的振动信号进行多尺度排列熵特征提取,然后通过距离评估技术从原始多尺度排列熵特征中选取敏感特征,最后将敏感特征输入到采用遗传算法优化的支持向量机中,实现对轴承不同运行状态的自动识别。对实验数据分析的结果表明,该方法可以精细地获取故障信息,从大量原始特征中选择出敏感特征,有效地实现滚动轴承故障状态的诊断。
1
故障诊断程序支持向量机智能诊断分为多个程序 数据输入、特征提取、功能函数等
1
基于EMD和支持向量机的旋转机械故障诊断方法研究:将支持向量机应用与故障诊断!
2022-05-09 15:17:13 7.94MB 支持向量机 故障诊断
1
基于matlab机械故障诊断教程,里面涵盖了很多程序,都可以直接用,还有模式识别,遗传算法、粒子群、支持向量机等,适合研究故障诊断方向使用
现有基于变分模态分解算法(VMD)的轴承故障诊断方法,由于其参数K需要依据先验知识预先设定,缺乏对K值最优设定的理论支撑,难以保证故障特征提取及故障诊断的精确性.针对上述问题,提出一种基于参数估计优化的VMD与多尺度熵(MSE)的石化装备轴承特征提取及诊断新方法.首先,针对VMD分解参数K的难以实现最优设定问题,利用局部均值分解(LMD)自适应分解分量的频率分布特征,构建一种实现K值有效估计的方法;其次,在VMD分解的基础上,提出一种MSE和线性判别分析(LDA)协同特征提取方法,完成特征模型构建;然后,针对轴承故障特征样本过少,利用支持向量机(SVM)对提取故障特征进行识别;最后,利用石化装备实验室仿真平台的轴承故障数据进行实验,验证算法的有效性和工程实用性.对比分析表明,所提出的算法可以很好地提取故障特征且故障识别精度较高,具有较好工程操作性和扩展性.
1
为了提高煤矿主扇风机故障诊断的准确性,将网格搜索法和支持向量机(SVM)应用到主扇风机的故障诊断中。首先,建立主扇风机运行故障的知识库,并将采集到的主扇风机振动信号进行小波消澡和归一化;然后,设计了网格搜索参数优化SVM的主扇风机故障诊断模型。最后,通过工程现场提取的数据进行实验验证,并与遗传算法和粒子群算法寻优的时间和诊断结果准确率进行比较。实验结果表明,网格搜索法SVM参数优化非常适合于煤矿主扇风机的故障系统中。
1
基于支持向量机的故障诊断及控制技术书中附带光盘里面的程序
2021-10-15 17:13:09 405KB 支持向量机 故障诊断
1
本文主要针对旋转机械的故障诊断问题,设计了基于LabVIEW的旋转机械振动测试系统,该系统通过软件编程来实现振动信号的存储、分析及特征提取,并且提出了基于支持向量机的智能故障诊断方法,该方法将特征向量直接输入到支持向量机分类器中进行故障识别,结果表明支持向量机对于机械故障有较好的分类效果。
1
支持向量机故障诊断及控制技术 matalb 代码
2019-12-21 20:34:17 2.98MB 支持向量机 故障诊断
1