1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2024-04-25 10:49:27 111KB 古典显式格式 Crank Nicolson 隐式格式
1
1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2022-05-25 22:10:31 111KB 古典显式格式 追赶法 Crank Nicolson
1
MATLAB源码--古典显式格式求解抛物型偏微分方程等
2021-09-28 16:10:12 111KB matlab
1
MATLAB源码--古典显式格式求解抛物型偏微分方程等
2021-07-26 16:49:27 118KB matlab
1
1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2021-07-19 08:43:32 111KB 古典显式格式 追赶法 Crank Nicolson
1
1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2021-07-01 04:49:17 111KB 古典显式格式 追赶法 Crank Nicolson
1
1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2019-12-21 22:21:26 118KB 古典显式格式 追赶法 Crank Nicolson
1
1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2019-12-21 20:06:58 111KB 古典显式格式 追赶法 Crank Nicolson
1