针对具有大量卷积神经网络的图像超分辨率算法存在的参数大,计算量大,图像纹理模糊等问题,提出了一种新的算法模型。 改进了经典的卷积神经网络,调整了卷积核大小,并减少了参数; 添加池层以减小尺寸。 降低了计算复杂性,提高了学习率,并减少了培训时间。 迭代反投影算法与卷积神经网络相结合,创建了一个新的算法模型。 实验结果表明,与传统的面部错觉方法相比,该方法具有更好的性能。
2025-06-20 09:26:30 763KB 卷积网络混合算法
1
为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度残差全卷积网络的高精度云检测方法,能够实现对遥感影像云层目标像素级别的分割。首先,编码器通过残差模块的不断降采样提取图像深层特征;然后,应用双线性插值进行上采样,结合多层次编码后的图像特征完成解码;最后,将解码后的特征图与输入图像融合后再次进行卷积,实现端到端的云检测。实验结果表明,对于Landsat 8云检测数据集,所提方法的像素精度达到93.33%,比原版U-Net提高了2.29%,比传统Otsu方法提高了7.78%。该方法可以为云层目标智能化检测研究提供有益参考。 【基于深度残差全卷积网络的Landsat 8遥感影像云检测方法】是一种利用深度学习技术改进遥感影像云层检测的创新方法。传统的云检测手段往往因为特征提取复杂、步骤繁多以及鲁棒性不足而限制了其在高精度应用中的表现。而该方法则旨在克服这些缺点,通过深度残差全卷积网络(Deep Residual Fully Convolutional Network,DRFCN)实现对遥感影像云层目标的像素级精确分割。 深度残差网络(Residual Network)是深度学习领域的一个重要突破,它通过引入残差块来解决深度神经网络中的梯度消失和爆炸问题,使得网络能更有效地学习到高层特征。在云检测中,DRFCN的编码器部分利用残差模块进行连续的下采样,这有助于提取图像的深层语义特征,如纹理、形状和颜色等与云层相关的重要信息。 全卷积网络(Fully Convolutional Network, FCN)在此过程中起到了关键作用,它允许网络直接进行像素级别的预测。在DRFCN中,经过编码器提取特征后,采用双线性插值进行上采样,目的是恢复图像的空间分辨率,同时结合不同层次编码后的图像特征进行解码。这种解码过程有助于保持从低层到高层的细节信息,确保了云检测的准确性。 解码后的特征图与原始输入图像融合,再次进行卷积操作,实现了端到端的云检测。这种方法的优势在于可以综合高级特征和低级特征,提高检测的鲁棒性和精度。实验结果显示,对于Landsat 8云检测数据集,该方法的像素精度达到了93.33%,相比原版的U-Net(Unet)提高了2.29%,相对于传统的Otsu方法提高了7.78%。 此方法不仅提升了云检测的精度,也为遥感影像分析的智能化和自动化提供了有效工具,特别是在气候监测、环境变化研究、灾害预警等领域具有广泛的应用潜力。未来的研究可以进一步优化网络结构,探索更高效的方法来融合特征,以及针对不同类型的遥感影像进行适应性调整,以提升在更大范围和更复杂条件下的云检测性能。
2025-06-04 12:25:18 2.36MB 深度学习 语义分割
1
基于python神经卷积网络的人脸识别
2024-03-15 16:55:37 134KB 网络 网络 python
1
用于视频中3D人姿估计的图注意力时空卷积网络(GAST-Net) 消息 [2021/01/28]我们更新了GAST-Net,使其能够生成包括关节和脚关节在内的19个关节的人体姿势。 [2020/11/17]我们提供了有关如何从自定义视频生成3D姿势/动画的教程。 [2020/10/15]我们使用单个RGB相机实现了基于在线3D骨架的动作识别。 [2020/08/14]我们实现了实时3D姿态估计。 介绍 时空信息对于解决3D姿态估计中的遮挡和深度模糊性至关重要。 先前的方法集中于嵌入固定长度的时空信息的时间上下文或局部到全局体系结构。 迄今为止,还没有有效的建议来同时灵活地捕获变化的时空序列并有效地实现实时3D姿态估计。 在这项工作中,我们通过注意机制对局部和全局空间信息进行建模,从而改善了人体骨骼运动学约束的学习:姿势,局部运动学连接和对称性。 为了适应单帧和多帧估计,采用了扩张
2024-02-02 19:46:42 39.9MB pytorch Python
1
常用深度网络总结,包含背景、创新点、表现、文章代码资源等 适用于机器学习、深度网络、计算机视觉的道友 自己手打总结文档,囿于能力,挂一漏万,如有笔误请大家指正~ 自己:脑机接口+人工智领域,主攻大脑模式解码、身份认证、仿脑模型… 在读博士第3年,在最后1年,希望将代码、文档、经验、掉坑的经历分享给大家~ 做的不好请大佬们多批评、多指导~ 虚心向大伙请教! 想一起做些事情 or 奇奇怪怪点子 or 单纯批评我的,请至Rongkaizhang_bci@163.com
1
如果你对DFace感兴趣并且想参与到这个项目中, 以下TODO是一些需要实现的功能,我定期会更新,它会实时展示一些需要开发的清单。提交你的fork request,我会用issues来跟踪和反馈所有的问题。也可以加DFace的官方Q群 681403076 也可以加本人微信 jinkuaikuai005 TODO(需要开发的功能) 基于center loss 或者triplet loss原理开发人脸对比功能,模型采用ResNet inception v2. 该功能能够比较两张人脸图片的相似性。具体可以参考 Paper和FaceNet 反欺诈功能,根据光线,质地等人脸特性来防止照片攻击,视频攻击,回放攻击等。具体可参考LBP算法和SVM训练模型。 3D人脸反欺诈。 mobile移植,根据ONNX标准把pytorch训练好的模型迁移到caffe2,一些numpy算法改用c++实现。 Tensor RT移植,高并发。 Docker支持,gpu版 安装 DFace主要有两大模块,人脸检测和人脸识别。我会提供所有模型训练和运行的详细步骤。你首先需要构建一个pytorch和cv2的python环境
2023-04-06 20:21:31 3.71MB MTCNN Center-Loss 多人实时人脸检测
1
这是一个手把手教你用 Tensorflow 构建卷机网络(CNN)进行图像分类的教程。教程并没有使用 MNIST 数据集,而是使用了真实的图片文件,并且教程代码包含了模型的保存、加载等功能,因此希望在日常项目中使用 Tensorflow 的朋友可以参考这篇教程。 概述 --- • 代码利用卷积网络完成一个图像分类的功能 • 训练完成后,模型保存在 model 文件中,可直接使用模型进行线上分类 • 同一个代码包括了训练和测试阶段,通过修改 train 参数为 True 和 False 控制训练和测试 数据准备 --- 教程的图片从 Cifar 数据集中获取,download_cifar.py 从 Keras 自带的 Cifar 数据集中获取了部分 Cifar 数据集,并将其转换为 jpg 图片。 默认从 Cifar 数据集中选取了 3 类图片,每类 50 张图,分别是 • 0 => 飞机 • 1 => 汽车 • 2 => 鸟 图片都放在 data 文件夹中,按照 label_id.jpg 进行命名,例如 2_111.jpg 代表图片类别为 2(鸟),id 为 111。
2023-03-06 17:25:53 224KB Tensorflow 卷积网络 CNN 图像分类
1
实现去雾算法,发现其中的问题,并对算法进行改进。 我首先实现了基于暗原色先验的去雾算法,并从运算速度和去雾效果方面进行了一定的改进。 之后,我训练了 AOD 卷积网络来进行图像去雾,并对数据集图片做一定的处理,增加了网络的鲁棒性,去雾效果也很不错。暗原色先验的去雾算法使用 MATLAB 实现,使用 MATLAB 的 GUI 设计了用户界面;AOD 卷积网络使用 Python 实现,使用 pyqt 设计了用户界面。
2023-01-15 19:39:35 19.88MB python 图像处理 图像去雾 卷积神经网络
1
含作业文件+完整数据集+图片文件。上传的是已经做过一遍了版本,可以作为答案,如果要自己做一遍就把start code到end code之间的删掉就行了。那之间的就是作业要求写的代码
2022-11-27 20:17:31 20.77MB 吴恩达 深度学习 卷积网络 作业
1
加法器MATLAB代码用于全卷积网络的 Atrous 空间金字塔池的 SoC 实现 队号 xohw19-188 项目名 用于全卷积网络的 Atrous 空间金字塔池的 SoC 实现 日期 2019 年 6 月 27 日。 上传档案的版本 1 大学名称 卡拉布里亚大学 信息学、建模、电子和系统工程系 主管姓名 斯蒂芬妮娅·佩里 主管邮箱 参与者 克里斯蒂安·塞斯蒂托 电子邮件 使用的板 Digilent ZedBoard Zynq-7000 ARM/FPGA SoC 开发板 Vivado 版本 2017.4 项目简述 此设计提供了一种新颖的 IP 核,该核采用 Atrous 空间金字塔池化方法,以更好地执行用于深度学习目的的语义图像分割。 通过以不同的速率应用扩张卷积,研究人员已经表明,这种策略可以更好地管理视野,并能够更好地识别多个尺度的物体。 通过利用 FPGA 的并行化能力,联合执行多个扩张卷积和全局平均池化。 通过使用 ZedBoard,整个系统允许内核和 DDR 之间通过 DMA 进行通信; 这些测试旨在通过​​将组件提供并存储在 DDR 中的结果与模拟其行为的 MATLAB
2022-11-25 16:41:12 69.39MB 系统开源
1