本文设计的新型全数字自动激光功率控制设计应用FPGA设计使用硬件资源少,节约成本;可以通过设置相应功率等级寄存器的值就可以很容易的改变功率等级划分的标准,大大增加了功率控制的灵活性;通过增加PWM模块和简单的模拟器件,就可以实现多个激光器的控制,大大缩短设计周期。 基于FPGA的数字激光自动功率控制系统设计是一种创新的解决方案,旨在优化半导体激光器的功率管理。该系统利用FPGA(Field-Programmable Gate Array)的可编程特性,以节省硬件资源并降低成本。FPGA的设计使得功率等级的划分更加灵活,只需通过修改相应的功率等级寄存器值即可实现。此外,通过集成PWM(Pulse Width Modulation)模块和少量模拟组件,该系统能够高效地控制多个激光器,显著缩短设计周期。 自动功率控制(APC)在半导体激光器中至关重要,因为激光器的阈值功率会随温度和使用寿命的变化而漂移。不稳定的阈值会导致输出光功率的波动,可能引发不良的光电效应和系统不稳定。传统的模拟电路APC方案虽然提供稳定的增益控制,但需要更多的元件,并且随着时间推移,元件的老化会影响控制精度。此外,这种方法的激光功率通常是固定的,无法实现多级功率控制。 本文提出的FPGA为基础的数字APC系统克服了这些问题。系统主要由光电检测、A/D转换、SOC(System on Chip)控制、APC判定、PWM反馈输出及低通滤波器等部分组成。光电检测器检测激光器的背向输出光功率,通过A/D转换器转化为数字信号,随后在FPGA的APC模块中进行处理,输出调整后的数字偏流信号。这个数字信号经过PWM模块和模拟低通滤波器,转换为模拟信号以驱动激光器。 FPGA内部设计包括SOC、APC和PWM模块。SOC中使用的是Leon2处理器,这是一款32位的嵌入式CPU,具备高可靠性和可扩展性,支持多种外设接口。APC模块负责功率控制决策,而PWM模块则生成用于控制激光器偏流的脉宽调制信号。 在硬件层面,该设计采用了Avnet Design Services的FPGA评估板,搭载Xilinx的XC4VLX25-FF668 FPGA芯片。该板还配备有32MB DDR内存和其他必要的外围设备,为实现高效、灵活的功率控制提供了硬件基础。 基于FPGA的数字激光自动功率控制系统通过数字化设计,实现了对激光器功率的精确控制,提高了系统的灵活性和可靠性,降低了成本,同时也简化了多激光器系统的设计和维护。这对于依赖于半导体激光器的高速光通信和其他应用具有重要意义。
1
内容概要:本文深入探讨了单台三相模块化多电平(MMC)逆变器的小信号建模技术,涵盖功率外环、环流抑制、电流内环及PLL控制等关键部分的建模。文章首先介绍了MMC逆变器在新能源领域的应用背景,随后详细解析了各控制部分的设计原理及其动态特性。功率外环通过先进控制算法实现电流有效控制,确保输出电压稳定;环流抑制减少谐波干扰,提升系统稳定性;电流内环维持电流平稳输出;PLL控制则确保相位锁定和频率稳定。最后,文章展示了仿真模型及其测试结果,验证了MMC逆变器的优良动态特性和性能。 适合人群:从事电力电子技术研究的专业人士,尤其是关注MMC逆变器设计与仿真的研究人员和工程师。 使用场景及目标:适用于希望深入了解MMC逆变器内部机制及其动态特性的科研工作者和工程技术人员。目标是掌握MMC逆变器的关键控制技术和建模方法,从而优化其在实际应用中的表现。 其他说明:文中提供的仿真模型和详细的建模过程有助于读者更好地理解和应用相关理论,推动新能源领域的发展。
2025-05-10 17:29:51 555KB 电力电子 功率控制
1
模块化多电平换流器MMC双端MMC-HVDC系统:柔性直流输电技术与最近电平逼近调制实现直流侧电压及功率控制策略,模块化多电平换流器MMC与双端MMC-HVDC柔性直流输电系统:320kV直流侧电压与有功无功控制策略,模块化多电平流器 MMC 双端MMC-HVDC,柔性直流输电系统。 直流侧电压320kV,交流侧线电压有效值166kV,100个子模块,采用最近电平逼近调制。 送端流站控制输出有功功率和无功功率,受端流站控制直流侧电压。 ,模块化多电平换流器(MMC); 双端MMC-HVDC; 柔性直流输电系统; 直流侧电压320kV; 交流侧线电压有效值166kV; 子模块数量100; 最近电平逼近调制; 送端换流站控制; 受端换流站控制。,基于模块化多电平MMC技术的双端MMC-HVDC柔性直流输电系统控制策略研究
2025-04-16 10:40:04 2.7MB kind
1
三电平储能变流器 Simulink 仿真,三电平储能变流器Simulink仿真研究:优化Q-U控制与SPWM载波层叠技术实现高效率功率控制,三电平储能变流器 simulink 仿真 基本工况如下: 直流母线电压:1500V 交流电网 :690 10kV 拓扑:二极管钳位型三电平逆变器 功率:300kW逆变,200kW整流 可实现能量的双向流动,整流、逆变均可实现 调制:可选SPWM载波层叠或svpwm调制 包含中点电位平衡,平衡桥臂实现 电压、电流THD<1%符合并网要求 双闭环控制: 外环:Q-U控制,直流电压控制 内环:电流内环控制 储能侧:双向Buck Boost电路,实现功率控制 ,默认 2018 版本 ,三电平储能变流器; Simulink仿真; 直流母线电压; 交流电网; 二极管钳位型三电平逆变器; 功率; 能量双向流动; 调制; 中点电位平衡; 双闭环控制; 储能侧; Buck Boost电路。,三电平储能变流器Simulink仿真工况研究
2025-04-08 14:05:24 5.37MB
1
在无线通信领域,分式规划(Fractional Programming, FP)是一种强大的工具,常用于解决复杂的优化问题,如信号传输的功率控制。FP涉及到数学优化理论,它允许我们以分数形式表达目标函数,使得问题的结构更为清晰且易于处理。本文将深入探讨分式规划在无线通信中的应用,以及如何借助Matlab进行实现。 分式规划的核心在于其目标函数是由分子和分母两部分构成的分数,这种形式特别适合处理涉及比例或比率的优化问题。在无线通信中,一个常见的应用场景是功率控制,目标是最大化系统整体的吞吐量或最小化干扰,同时确保每个用户的最低服务质量。 二次变换是解决分式规划问题的一种有效方法。通过将分式转化为等价的凸二次形式,我们可以利用凸优化算法来求解。例如,Dinkelbach算法就是一个经典的二次变换技术,它将原分式问题转化为一系列无理函数的线性优化问题,从而简化了求解过程。 功率控制在无线通信中至关重要,因为它直接影响到信号质量、覆盖范围和能效。在多用户环境中,功率控制需要平衡各个用户的信号强度,防止强信号对弱信号的干扰,同时保证网络资源的公平分配。分式规划可以有效地解决这个问题,通过优化发射功率,达到提升系统性能的目的。 Matlab作为强大的数值计算软件,提供了丰富的工具箱,如CVX,用于处理凸优化问题。CVX允许用户以高阶语言的形式定义优化问题,自动处理内部的凸优化转换和求解过程。在分式规划的Matlab实现中,我们可以首先定义分式目标函数和约束条件,然后调用CVX进行求解。这种方法不仅降低了编程难度,还提高了问题求解的效率。 在实际操作中,我们需要编写Matlab代码来构建分式规划模型,这通常包括以下几个步骤: 1. 定义变量:声明需要优化的变量,如功率分配。 2. 定义目标函数:用分式形式表示目标函数,如系统吞吐量或干扰比。 3. 设置约束:根据无线通信场景,设定功率限制、信噪比阈值等约束条件。 4. 使用CVX:导入CVX库,声明问题为凸优化问题,并调用`cvx_begin`和`cvx_end`来包围目标函数和约束。 5. 求解问题:运行Matlab,CVX会自动处理内部转化并找到最优解。 6. 分析结果:输出优化后的功率分配方案,评估系统性能。 通过以上步骤,我们可以利用Matlab和CVX有效地解决无线通信中的分式规划问题,实现功率控制策略,提高网络性能。在实际应用中,还需要结合无线通信系统的具体特性,如信道模型、用户分布等因素,对模型进行调整和优化,以获得更贴近实际的解决方案。
2024-07-11 18:21:53 486KB matlab 功率控制 分式规划
1
使用simulink进行三电平整流器功率控制
2024-05-18 13:41:55 79KB
光伏三相并网: 1.光伏10kw+MPPT控制+两级式并网逆变器(boost+三相桥式逆变) 2.坐标变换+锁相环+dq功率控制+解耦控制+电流内环电压外环控制+spwm调制 3.LCL滤波 仿真结果: 1.逆变输出与三项380V电网同频同相 2.直流母线电压800V稳定 3.d轴电压稳定311V;q轴电压稳定为0V,有功功率高效输出
2024-04-17 16:59:21 268KB
1
PQ恒功率控制+功率电流环三相逆变器并网
2024-04-02 11:32:42 24KB matlab
1
基于MMC-MTDC系统的多点功率控制,姜莉,李卫星,基于模块化多电平换流器的多端直流输电系统(MMC-MTDC)具有广阔的应用前景,尤其适用于大型风电场的传输并网。文中首先建立了含风�
2024-02-26 23:02:36 496KB 首发论文
1
该模型采用有限集模型预测直接功率控制方法来控制PWM整流器。交流侧输入三相对称交流电,220V/50Hz,直流侧输出760V。其中,模型预测采用S-Function模块实现,在运行模型前需要先运行其代码并添加到路径。