SRM算法是目前隐写分析中广泛使用的方法,但不能有效检测自适应隐写算法。为提高针对自适应隐写算法的检测率,通过改进SRM算法,利用不同区域的像素对隐写检测贡献的差异性,提出了一种基于权值分配的隐写分析算法。理论证明了权值分配能够提高隐写检测特征的分类能力,并设计了一种基于权值分配的特征提取框架。依据像素失真代价确定优先像素集,设计合理的权值函数对不同区域的像素噪声残差分配权值,提取四阶共生矩阵作为隐写检测特征。实验结果表明,在检测以HILL为代表的自适应隐写算法时,与SRM和PSRM检测算法相比,所提算法的平均错误率分别降低了2.09%和1.53%,说明能够有效实施针对自适应隐写算法的检测。
1
伦敦-scikit Data Science London 正在举办一场关于 Scikit-learn 的聚会。 本次比赛是尝试、分享和创建 sklearn 分类能力示例的练习场(如果这变成了有用的东西,我们可以跟进回归,或更复杂的分类问题)。 请参阅 Kaggle 网站
2021-12-15 21:05:25 2KB Python
1