### 光束法平差模型详解 #### 一、引言 光束法平差是在摄影测量领域中广泛应用的一种计算方法,它通过整合外方位元素和模型点坐标的计算过程,提高了整体精度与效率。本文将详细介绍光束法平差模型的理论基础,包括旋转矩阵的四元素表示法以及光束法平差模型的具体步骤。 #### 二、旋转矩阵的四元素表示法 在摄影测量中,为了减少计算复杂度并避免奇异问题,常采用四元素表示旋转矩阵。这种方法由Pope提出,并被Hinsken进一步发展成为P-H算法。 **2.1 四元素条件** 四元素\(d, a, b, c\)需要满足特定条件,即: \[ d^2 + a^2 + b^2 + c^2 = 1 \] **2.2 构造正交矩阵** 基于这四个参数,可以构建两个正交矩阵\(P\)和\(Q\),进而形成旋转矩阵\(R\): \[ P = \left[ \begin{array}{ccc} d^2 + a^2 - b^2 - c^2 & 2(ab + dc) & 2(ac - db) \\ 2(ab - dc) & d^2 - a^2 + b^2 - c^2 & 2(bc + da) \\ 2(ac + db) & 2(bc - da) & d^2 - a^2 - b^2 + c^2 \end{array} \right] \] \[ Q = \left[ \begin{array}{ccc} d^2 - a^2 - b^2 + c^2 & 2(ab + dc) & 2(ac - db) \\ 2(ab - dc) & d^2 - a^2 + b^2 - c^2 & 2(bc + da) \\ 2(ac + db) & 2(bc - da) & d^2 + a^2 - b^2 - c^2 \end{array} \right] \] 由此,旋转矩阵\(R\)可以表示为: \[ R = P \cdot Q^\top \] 这种表示方式能够简化旋转矩阵的计算过程,并避免了传统旋转矩阵表示法中的多值性和奇异性问题。 #### 三、光束法平差模型 光束法平差的核心在于将外方位元素和模型点坐标的计算置于同一优化过程中。它基于共线方程式的数学模型,并通过迭代逐步逼近最优解。 **3.1 共线方程式的表达** 假设摄影中心\(S\)的世界坐标为\((S_x, S_y, S_z)\),空间点\(M\)的坐标为\((X, Y, Z)\),而\(M\)在影像上的构象为\(m\),其像平面坐标为\((x, y, -f)\)。根据S、m、M三点共线关系,可以得出共线方程式: \[ \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{-f}{n} = \rho \] 其中,\(\rho\)为比例系数,\(l, m, n\)分别为旋转矩阵的行向量,\((x_0, y_0, f)\)为影像内方位元素。 **3.2 共线方程式的线性化** 为了进行最小二乘法计算,需要对非线性的共线方程式进行线性化处理。线性化后的误差方程可以表示为: \[ \Delta l_i = A_{i} \cdot \Delta X \] 其中,\(\Delta l_i\)为观测值与理论值之间的残差,\(\Delta X\)为未知数改正数组,\(A_i\)为系数矩阵。 **3.3 误差方程式的建立** 结合线性化的共线方程式和观测数据,可以建立误差方程式。对于控制点还需要考虑权重赋值,以便更准确地反映数据质量。 **3.4 法方程式的建立** 根据最小二乘原理,建立法方程式以求解未知数改正数。对于加密点,仅需列出误差方程式;而对于控制点,则需要同时列出误差方程式和虚拟误差方程式。 **3.5 结果判定** 迭代计算直到未知数改正数满足预设的限差条件为止。迭代过程中,初始值的选择对收敛速度有很大影响。实践中,常用的方法是先进行空间后方交会获得初步的外方位元素,以此作为迭代过程的初始值。 ### 四、总结 光束法平差模型是一种高效的摄影测量计算方法,它通过整合外方位元素和模型点坐标的计算过程,提高了整体精度与效率。通过对旋转矩阵的四元素表示法和光束法平差模型的详细阐述,我们可以更好地理解这一方法的基本原理及其在实际应用中的优势。未来,随着计算机技术的发展,光束法平差模型将在更多领域发挥重要作用。
2025-06-23 15:09:56 134KB 光束法平差
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-20 11:15:24 3.37MB matlab
1
探索高斯光束、超高斯光束与贝塞尔光束在COMSOL中的添加方法:全面解析与文献指引,助力科研工作者的技术突破,如何将高斯光束、超高斯光束和贝塞尔光束添加至COMSOL仿真中的实践指南及文献探讨,高斯光束、超高斯光束、贝塞尔光束各种激光形状如何添加到COMSOL中,只要有文献都可实现,一直以为这个不是什么难点,发现有挺多不会做的。 ,高斯光束; 超高斯光束; 贝塞尔光束; 文献添加方法; 无需为难点; COMSOL 建模,在COMSOL中实现高斯、超高斯与贝塞尔光束:文献指南与解析 在科学研究与技术开发中,光学模拟软件如COMSOL Multiphysics扮演着至关重要的角色,它允许研究人员在计算机上构建复杂的物理模型,并对其性能进行详细的分析。高斯光束、超高斯光束以及贝塞尔光束是激光技术中的基本概念,它们各自拥有不同的物理特性及应用领域。高斯光束在理想情况下具有最小的光束扩展,超高斯光束光束的中心部分比高斯光束更平坦,而贝塞尔光束则在传播过程中保持稳定的相位结构,具有无衍射特性。 高斯光束是许多激光应用中最常见的光束模式,其强度分布遵循高斯函数,具有最小的聚焦半径和较高的光束质量。超高斯光束的特点是其强度分布比传统高斯光束更加平坦,中心部分更宽,边缘则急剧下降。贝塞尔光束是另一类特殊的光束,它在传播过程中保持其相位结构不变,因此不会像高斯光束那样逐渐发散,能够在一定范围内保持稳定的光束直径。 在COMSOL中模拟这些光束,首先需要对激光的物理特性有深入的理解,包括其波长、光束直径、发散角等参数。通过在COMSOL中正确地设置这些参数,研究人员可以构建起各种激光束模型,模拟它们在不同条件下的行为。此外,通过与实验数据进行比对,还可以调整模型参数,确保模拟结果的准确性。 这些光束的建模通常需要对COMSOL中的几何建模、光学模块及数值计算方法有一定的掌握。例如,在COMSOL中添加高斯光束可能需要用户创建一个具有特定形状和材料属性的模型,并施加适当的边界条件以模拟光束的传播特性。超高斯光束和贝塞尔光束的添加则可能需要更复杂的设置,如使用多阶高斯函数或特殊相位函数来定义它们的强度分布。 除了技术操作之外,高斯光束、超高斯光束与贝塞尔光束的COMSOL仿真还涉及一系列的文献研究。这包括研究前人在类似模型上的工作,以及了解他们是如何设置模型参数、解释结果,和进行实验验证的。通过阅读相关文献,科研工作者可以更快地掌握各种光束模型的建立方法,并在此基础上进行创新和优化。 高斯光束、超高斯光束和贝塞尔光束在COMSOL中的模拟对于激光技术的研究和开发具有重要意义。它不仅要求研究者具备扎实的理论知识,还需要他们能够熟练运用仿真软件,以及能够理解并应用相关领域的研究文献。通过这些方法,科研工作者可以在理论研究与实际应用之间架起一座桥梁,实现技术上的突破。
2025-04-18 15:41:23 974KB xbox
1
在COMSOL中实现高斯光束、超高斯光束及贝塞尔光束的添加:通用方法与文献指引,高斯光束、超高斯光束、贝塞尔光束各种激光形状如何添加到COMSOL中,只要有文献都可实现,一直以为这个不是什么难点,发现有挺多不会做的。 ,高斯光束; 超高斯光束; 贝塞尔光束; 激光形状; 文献参考; COMSOL模拟; 不是难点。,在COMSOL中实现高斯、超高斯与贝塞尔光束:文献指南与解析 在当今科学技术研究领域中,光学模拟软件如COMSOL Multiphysics已成为分析和研究光束传播特性的重要工具。本文将详细介绍在COMSOL中如何添加和模拟三种常见的激光光束形状:高斯光束、超高斯光束以及贝塞尔光束,并提供相关的文献参考以供深入研究。 高斯光束是激光技术中最常见的一种光束形态,其光强分布呈高斯分布,即在横截面上光强从中心向边缘逐渐减弱。在COMSOL中添加高斯光束,通常需要借助内置的物理场接口,如波动光学模块中的光束追踪功能,或者通过编写自定义的脚本代码来实现。高斯光束的参数包括波长、束腰半径、光束发散角等,通过合理设置这些参数,可以在模拟中复现高斯光束的特性。 超高斯光束则是在高斯光束基础上扩展而来,其光强分布更加集中于束腰位置,边缘衰减更快。在COMSOL中实现超高斯光束的添加,可以通过调整高斯分布的幂指数来实现。超高斯光束在激光加工、光束整形等领域有着广泛的应用。 贝塞尔光束是一种无衍射的光束,其独特的性质如保持光束形态不变等使其在光学陷阱、光学镊子等技术中有重要应用。在COMSOL中添加贝塞尔光束相对复杂,需要利用特殊的技术和方法。常见的方法包括使用内置的特殊函数或者通过傅里叶变换和角谱方法模拟贝塞尔光束的传播特性。 本文档集的文件列表中包含了关于模拟高斯、超高斯以及贝塞尔光束的多个文件,其中包括摘要、论文标题、模拟探索等内容。通过这些文件,可以进一步了解在COMSOL软件中如何进行高斯光束、超高斯光束及贝塞尔光束的建模和分析。这些文件可能会提供一些模拟技巧、设置参数的方法和建议,有助于模拟者更好地理解和掌握在COMSOL中进行这些光束模拟的具体步骤。 掌握在COMSOL中模拟高斯光束、超高斯光束及贝塞尔光束的方法对于光学工程师和研究人员来说是十分重要的。通过上述介绍和相关文献的指引,研究者可以在模拟软件中成功构建并分析这些光束的传播特性,从而在光学设计和应用方面取得进展。本文不仅提供了技术性的操作指导,还强调了文献参考的重要性,这对于深入研究光学问题提供了理论支持。
2025-04-18 15:33:23 680KB xbox
1
现阶段用于激光谐振腔的仿真软件多种多样,但大多已是集合而成,用户无法了解其详细内容。 本代码包(ABCDRez)是基于MATLAB语言的激光高斯光束传输(Laser Gaussian Beam Propagation)及激光谐振腔仿真(Laser Resonator Simulation)代码包。文章使用高斯光束描述激光,简单介绍了热效应(Thermal Effect)、腔内非线性变换(Nonlinear Frequency Transformation),主要介绍了光束的调节与匹配(Beam Adjusting and Matching)、驻波谐振腔(Standing Stable Resonator)、行波谐振腔(Traveling Stable Resonator)相关内容。用接近数学表达式的自然化语言,使用户更易学习、掌握及灵活运用。 其核心内容可以参见吕百达教授著《激光光学 光束描述、传输变换与光腔技术物理》、reZonator软件官网、羊国光教授等著《高等物理光学》、李港教授著《激光频率的变换与扩展》、Walter Koechner著《固体激光工程》等。
2025-02-13 20:15:19 27.34MB matlab
1
在光学领域,高斯光束是一种非常重要的理论模型,它广泛应用于激光物理学、光学通信以及光学成像系统中。本文将深入探讨如何使用MATLAB进行高斯光束的仿真,并结合给定的“高斯光束的简单matlab仿真.txt”文件,为你提供一个详细的知识框架。 我们需要理解高斯光束的基本概念。高斯光束是一种沿传播方向具有高斯分布强度的光束,其光强遵循高斯函数的形式,中心强度最高,随着离轴距离的增加而迅速衰减。这种光束的特点是其光场在横截面上呈椭圆形或圆形,且具有最小的发散角,使得光束能保持较好的聚焦特性。 在MATLAB中,我们可以使用多种方法来模拟高斯光束。我们可以利用数学函数来生成高斯分布的光强图案。`normpdf`函数是MATLAB中生成正态分布的工具,它可以生成二维高斯分布的光强矩阵。例如,创建一个大小为MxN的二维数组,表示光束在xy平面上的分布,可以使用以下代码: ```matlab [x, y] = meshgrid(-L:L, -L:L); % L决定矩阵的大小 gaussBeam = normpdf(sqrt(x.^2 + y.^2), 0, waist); % waist为高斯束腰半径 ``` 这里的`sqrt(x.^2 + y.^2)`计算了每个点到光束中心的距离,`normpdf`则计算了对应距离上的高斯分布值。 接下来,我们可能需要考虑高斯光束的传播。在自由空间中,高斯光束的传播可以通过衍射积分或者使用近轴近似的方法(如ABCD矩阵法)来模拟。MATLAB的`fspecial`函数可以创建各种光学滤波器,包括衍射效应。对于远场的模拟,可以使用`ifft2`和`fft2`进行傅里叶变换来实现。 文件“高斯光束的简单matlab仿真.txt”可能包含了具体的仿真步骤和代码示例,这将帮助你更深入地了解如何在MATLAB中构建和分析高斯光束的传播特性。此外,“123.jpg”可能是一个仿真结果的图像,展示了高斯光束在不同位置的强度分布情况。 为了使仿真更加真实,还可以考虑引入其他因素,比如光束的偏振、色散、非线性效应等。MATLAB的Optics Toolbox提供了丰富的光学元件模型和物理模型,可以方便地模拟这些复杂情况。 通过MATLAB进行高斯光束的仿真,不仅可以直观地理解高斯光束的特性,还能为实际的光学系统设计和实验提供理论依据。学习并掌握这一技能,对于研究激光科学、光学工程等领域具有重要意义。
2024-11-27 20:48:50 134KB laser matlab 高斯光束
1
Unity3D是一款强大的跨平台游戏开发引擎,以其高效、易用和丰富的图形表现力而闻名。在本资源中,"FXlight pack"是专门针对Unity3D设计的一套特效粒子系统,专注于创建光束效果。粒子系统是Unity3D中的一个重要组件,用于模拟各种视觉效果,如火焰、烟雾、水流、爆炸以及我们这里的光束光束效果在游戏和互动媒体中广泛使用,可以增强场景的视觉冲击力和动态感。FXlight pack提供了一系列预设的光束特效,包括但不限于激光、射线、光芒等,这些效果可以通过调整参数进行自定义,以适应不同的游戏风格和场景需求。例如,你可以改变光束的颜色、宽度、衰减速度、透明度、发射方向等属性,来创造出独一无二的视觉体验。 在Unity3D中,粒子系统的实现基于一系列可编程的粒子,每个粒子都有自己的生命周期和属性。通过粒子系统,开发者可以创建出复杂的、实时的动画效果。粒子特效的实现通常涉及到以下几个关键概念: 1. **粒子生成**:定义粒子的出生率、出生位置和初始状态。 2. **粒子寿命**:每个粒子都有一个生命周期,从诞生到死亡。 3. **粒子运动**:粒子的移动轨迹,可以设置速度、加速度、旋转等。 4. **颜色变化**:粒子在其生命周期中的颜色变化,可以实现渐变、闪烁等效果。 5. **纹理动画**:使用纹理序列创建动画效果,如火焰燃烧的过程。 6. **粒子碰撞**:与场景或其他物体的交互,可以产生反弹、消失等效果。 7. **粒子系统融合**:多个粒子系统可以叠加在一起,产生更复杂的效果。 对于"FXlight pack"这样的特效包,通常会包含预设的粒子系统脚本和材质,用户可以直接拖放到场景中,然后根据需要调整参数。这大大简化了特效的制作流程,使开发者可以专注于游戏内容的创新,而不是底层技术的实现。 标签中的"特效离子"可能是指在粒子系统中利用离子效应创建的特殊视觉效果,比如电离子、能量脉冲等,这些通常与科幻或未来主题的游戏相关。在Unity3D中,可以通过粒子系统和Shader的结合,实现离子效果的逼真模拟。 "Unity3D特效粒子 光束效果 FXlight pack 特效包 免费更新"是一个为游戏开发者提供的强大工具,它可以帮助开发者快速构建各种光束特效,提升游戏的视觉品质。无论你是新手还是经验丰富的开发者,都能从中受益,轻松地将绚丽的光束效果融入到你的作品中。
2024-11-05 11:47:57 8.89MB unity3d 特效离子
1
BEAMPATH 是一个 2D 和 3D 代码,用于模拟线性粒子加速器和束传输中空间电荷主导的束动力学。 该程序用于在包含射频间隙、射频四极杆、多极透镜、螺线管、弯曲磁铁、加速波导的通道中对轴对称、四极对称和 z 均匀光束进行细胞内粒子模拟。 模型的详细描述可以在 YKBatygin,“用于直线加速器和光束线中的光束动力学模拟的粒子内代码 BEAMPATH”核仪器和物理研究中的方法 A 539 (2005) 455-489 中找到。
2024-05-30 09:45:00 4.17MB 开源软件
1
基于matlab绘制各种模式拉盖尔高斯光束,用于研究涡旋光、结构光,帮助理解matlab在科研绘图中的应用 包含主程序和函数文件,函数文件用于产生拉盖尔函数
2024-04-14 20:06:30 895B matlab
1
光学元件上存在的缺陷缺陷传输传输光束产生的局域振幅和位相调制。基于衍射理论模型和分步傅里叶算法,模拟分析了高斯透射穿过表面有缺陷的非线性介质的传输过程中于介质内及从介质出射后在自由空气的传输特性,并详细研究了在厚介质前表面有缺陷的情况下,介质中和自由空气中的光强分布变化规律。非线性折射率,光束整体聚焦越厉害,聚焦点离介质后表面越近。光束受调制点的位置离中心越近,光束分裂成丝产生的局部光强,且介质表面存在缺陷将使通过的光束在介质后表面处产生一个很大的光强,相位调制型缺陷产生的这一光强点比渐变调制型缺陷产生的光强点更强。
2024-03-18 18:34:11 256KB 振幅调制;
1