光子学是光子学与半导体技术相结合的前沿科技领域,它的核心是在硅材料上实现光信号的产生、传输、处理和检测等一系列功能。硅光子学的出现是为了解决传统电子集成电路在高速数据传输、长距离通信、以及大规模并行数据处理方面所面临的瓶颈问题。 标题“Silicon Photonics 短教程”表明了这是一份关于硅光子学基础知识和应用的介绍性材料。本教程由CREOL(光子学与光学学院)的助理教授Sasan Fathpour博士编写,并且将在CREOL的工业联盟研讨会上进行讲授。CREOL是位于佛罗里达大学中心的一个研究中心,专注于光子学和光学领域的研究与教育。 课程分为几个部分:首先是硅光子学的介绍和被动硅光子器件,涉及硅光子学的应用历史和技术基础,如硅绝缘体波导、多模干涉器(MMI)、阵列波导光栅(AWG)等。第二部分关注的是主动硅光子器件,包括硅中的光调制、检测和发射技术。第三部分将讨论硅光子学当前的趋势和挑战,例如光子学是否会与VLSI CMOS技术真正融合,以及硅光子学的竞争对手技术。第四部分涉及非线性硅光子学器件及其物理学原理。 Sasan Fathpour博士的个人背景丰富,他在2005年于密歇根大学安阿伯分校获得博士学位,研究方向是基于III-V量子点的激光器和自旋电子光源。在UCLA担任博士后研究员后,2007年担任访问助理教授,2008年成为Ostendo Technologies的高级研究员,并于同年成为CREOL的助理教授。 Fathpour博士的研究工作涵盖了硅光子学的多个方面,其中一些重要的工作包括与Bahram Jalali合作在IEEE《光波技术杂志》上发表的研究文章,以及与Jalali编辑的《硅光子学:电信和生物医学应用》一书。 在硅光子学的简介中,提到了硅光子学在不同领域的应用,例如电信和生物医学。接下来是硅光子学的历史概述,介绍了硅光子学的兴起与发展,这一技术的实现依赖于对硅绝缘体波导的深刻理解,这些波导作为硅光子学的基础器件,在光电集成芯片上承载着光信号的传输任务。 硅光子学的被动器件部分讲述了波导、MMI和AWG等基本构件,它们负责光信号的路由和分配,被动器件在硅光子集成电路中充当基础角色,是实现复杂光学功能不可或缺的组件。 在主动硅光子器件部分,涉及到的光调制、检测和发射技术是实现光通信、光信息处理等复杂功能的核心,这些功能的实现可以极大提高数据传输的速度和可靠性。 在硅光子学的当前趋势和挑战部分,课程内容提出了光子学与微电子学(如VLSI CMOS技术)结合的可能性,以及硅光子学面临的竞争技术,这些内容帮助我们理解硅光子学在未来微电子集成领域中的潜在作用。 在非线性硅光子学部分,探讨了在硅材料中实现的非线性光学效应及其相关的光子器件,这些器件在进行光学放大、波长转换等高级光信号处理方面具有重要应用。 这份“Silicon Photonics 短教程”为我们提供了一个关于硅光子学发展的全面视角,涵盖了从基础概念到未来趋势的多个方面,并且通过Fathpour博士的专业知识和丰富的研究背景,为我们带来了该领域的最新进展和深入理解。
2024-09-29 11:25:34 8.4MB 硅光子学
1
使用CMS实验在2016年收集的数据,在s = 13 $$ \ sqrt {s} = 13 $$ TeV的质子-质子碰撞中,对最终状态中包含光子和横向动量缺失的新物理学进行了搜索。 LHC,对应的综合光度为35.9 fb-1。 没有发现与标准模型的预测有偏差。 在暗物质产生和包含额外空间尺寸的模型的背景下解释了结果,并以95%的置信度计算了对新物理参数的限制。 对于所考虑的两个简化的暗物质生产模型,对于1 GeV暗物质,所观察到的(预期)介体质量的下限均为950(1150)GeV。 对于有效的电弱-暗物质接触相互作用,抑制参数Λ的观察到的(预期的)下限是850(950)GeV。 对于3到6个额外的空间尺寸,不包括有效的Planck比例尺值(最高2.85–2.90 TeV)。
2024-07-05 22:14:25 1.76MB Open Access
1
在s = 13 $$ \ sqrt {s} = 13 $$ TeV的质子-质子碰撞中,寻找一个最终状态的新物理,该状态包含光子和缺失的横向动量。 通过CERN LHC的CMS实验收集的数据对应于12.9 fb -1的综合光度。 相对于标准模型的预测没有观察到偏差。 结果被解释为包含额外空间尺寸的模型中暗物质产生截面和参数的排除极限。 针对使用单光子最终状态的先前搜索设置了改进的限制。 特别是,在此渠道中,迄今为止,对额外维度模型参数的限制最为严格。
2024-07-05 21:06:40 1.07MB Open Access
1
给出了搜索质量模型的希格斯玻色子的结果,该质量模型的质量范围介于70和110 GeV之间,并衰减成两个光子。 该分析使用CMS实验收集的2012年和2016年LHC运行期间质子-质子碰撞数据集。 数据样本对应于在s = 8(13)TeV时的19.7(35.9)fb-1积分光度。 给出了横截面和分支成两个光子的乘积的预期和观察到的95%置信度上限。 2012(2016)数据集的观测上限范围为129(161)fb至31(26)fb。 在80到110 GeV的共同质量范围内对两个数据集进行分析得出的结果的统计组合得出了横截面和支化分数乘积的上限,并标准化为标准模型希格斯玻色子的上限 ,范围从0.7到0.2,但有两个值得注意的例外:一个在Z玻色子峰附近,极限上升到1.1,这可能是由于存在Drell–Yan双电子产生,在这种情况下电子可能被误认为是孤立的光子 ,以及第二个是由于相对于标准模型预测而言观察到的过量,对于质量假设95.3 GeV具有局部(全局)有效值2.8(1.3)标准偏差而言,这是最大的。
2024-07-05 20:31:25 1.49MB Open Access
1
据报道,与光子有关的单个顶夸克产生的事件的第一证据。 该分析基于s = 13 TeV时的质子-质子碰撞,并由CMS实验于2016年记录,对应的综合光度为35.9 fb-1。 通过选择是否存在介子(μ),光子(γ),来自未检测到的中微子(ν)的横向动量失衡以及至少两个射流(j)来确定事件,其中恰好一个射流与 夸克的强子化。 基于拓扑和运动学事件属性的多元判别式可用于从背景过程中分离信号。 观察到超出仅背景假设的过量值,其显着性为4.4个标准差。 测量检测器中心区域中横向动量大于25 GeV的孤立光子的基准横截面。 横截面和分支分数的测量结果为σ(pp→tγj)B(t→μνb)= 115±17(stat)±30(syst)fb,与标准模型预测一致。
2024-07-05 19:10:46 658KB Open Access
1
在本文中,我们报告了通过LHCf实验在s = 13TeV质子-质子碰撞的情况下测量的伪快速区域η> 10.94和8.99>η> 8.81中正向光子的产生截面。 将2015年6月获得的0.191nb-1数据的分析结果与几种超强相互作用模型的预测结果进行了比较,这些模型用于超高能宇宙射线的空气淋浴模拟中。 尽管没有一个模型与数据完全吻合,但是EPOS-LHC在模型中显示出与实验数据的最佳一致性。
2024-07-05 18:05:54 800KB Open Access
1
介子的光子跃迁形状因子FÏα(Q2)的低能和高能行为分别对介子波函数的横向和纵向分布敏感。 因此,对FÏα(Q2)的仔细研究应为介子波函数的性质提供有用的约束。 在本文中,我们提出对CELLO,CLEO,BABAR和BELLE合作报告的FÏQ(Q2)数据的组合分析。 通过使用最小二乘法进行。 通过使用BELLE和CLEO合作的组合的测量,可以将介子波函数的纵向和横向行为固定到一定程度,即,我们可以得到β[0.691,0.757] GeV和Bβ[0.00,0.235] 对于Pχ2≥90%,其中β和B是方便的介子波函数模型的两个参数。 注意,如文献中所建议的那样,在适当选择参数的情况下,这种介子波函数的分布幅度可以模仿各种纵向行为。 我们观察到CELLO,CLEO和BELLE数据彼此一致,它们都喜欢渐近式分布幅度。 而BABAR数据则倾向于更宽的分布幅度,例如CZ型。
2024-07-05 16:18:06 953KB Open Access
1
众所周知,相干振荡的轴力场是暗物质的候选者。 在振荡轴的存在下,光子可以通过参量放大而共振产生。 在宇宙中,还存在宇宙磁场,它们是相干电磁场。 在存在磁场的情况下,轴可以转换为光子,反之亦然。 因此,研究在存在轴突暗物质和磁场的情况下轴突光子系统发生什么是很有趣的。 该系统可以看作是轴和光子的耦合系统,其方程包含Mathieu类型项。 我们发现,与传统的Mathieu方程相比,在存在磁场的情况下,不稳定性条件发生了变化。 稳定点和不稳定点之间的分叉点位置发生了变化,并出现了新的不稳定性带。 这是因为共振放大的轴可以转换为光子,反之亦然。
2024-07-05 15:45:33 739KB Open Access
1
我们提出了按QCD的次要顺序进行的直接光子产生的计算,并将该计算与使用POWHEG BOX的parton花洒的匹配。 基于POWHEG + PYTHIA的模拟,我们对RHIC pp碰撞中迅速产生光子光子强子射流相关性的PHENIX数据进行了详细的现象学分析,相对于先前的计算,大大改善了对这些数据的描述,我们建议采取其他措施 有趣的分析。
2024-07-05 15:03:19 566KB Open Access
1
我们通过运输和摄动QCD混合模型研究了LHC处与大横向动量光子相关的射流的介质修饰,该模型结合了弹性碰撞和parton阵雨所经历的辐射能量损失的贡献。 进行了计算,以修改标记有光子的射流的产量,光子与射流的能量不平衡以及偏侧射流的方位角分布。 研究了具有不同xT = pT,J / pT,γ值的带有光子标签的射流的变型,由于遍历不同的介质长度和密度分布,它们显示出不同的中心性和射流锥大小依赖性。 我们进一步研究了横向和纵向射流传输系数对光子标记射流生产和射流形状观测值的核修饰的影响。
2024-07-05 14:26:58 1.07MB Open Access
1