百度SDK的三种鉴权方式非常容易混淆,所以我专门写了一篇博客:https://blog.csdn.net/quickrubber/article/details/146971733 相关的代码就在这个压缩包中。 在当今数字化时代,软件开发人员经常需要利用各种第三方服务来丰富应用程序的功能,其中百度作为中国领先的人工智能技术公司,其提供的SDK(软件开发工具包)尤其受到开发者的青睐。SDK中包含了实现各种服务所需的功能模块,如图像识别、语音识别、自然语言处理等。为了保障服务的安全性和可追踪性,百度SDK通常要求开发者在使用过程中进行鉴权验证。鉴权是指确认请求是否来自合法用户,防止未授权访问和滥用资源,这对于保护用户数据安全和保证服务的合规性至关重要。 在百度SDK中,鉴权通常涉及三种主要方式:API Key、Secret Key和Access Token。API Key是一个公开的密钥,用于标识开发者身份,可以公开分享而不影响安全性。Secret Key则是与API Key配套的私钥,它需要保密,不能泄露,因为它用于对请求进行签名,以确保请求是由拥有密钥的开发者发起的。Access Token是另一种类型的密钥,它通常用于用户的登录态管理,可以提供细粒度的访问控制,适用于需要用户授权的应用场景。 在进行百度SDK鉴权测试时,开发者需要编写代码来验证这三种鉴权方式是否正确应用,以及它们是否能够在不同情境下有效运行。测试代码不仅要能够正确生成和使用这些密钥,还要能够模拟非法访问的情况,从而确保鉴权机制的健壮性。 在编写测试代码的过程中,开发者可能会使用多种编程语言和测试框架。根据给定的文件名称,此处的测试代码可能是使用Python 3.8版本编写的。Python因其简洁易读的语法和强大的库支持,成为了很多开发者进行快速原型开发和测试的首选语言。在测试代码中,开发者需要模拟不同的请求场景,包括但不限于正常的鉴权请求、API Key泄露后的非法请求、以及Secret Key被滥用的情况等。 除了编写测试代码,开发者可能还会在博客或其他技术文章中分享他们的测试经验和发现的问题。通过这样的技术分享,不仅可以帮助其他开发者更好地理解百度SDK的鉴权机制,也可以促进开发者之间的技术交流和合作。 此外,随着人工智能技术的快速发展,机器视觉作为其中的一个重要分支,在鉴权过程中也扮演着不可或缺的角色。机器视觉技术可以用于增强鉴权的安全性,例如通过人脸识别来验证用户身份,或者通过图像识别来检测和防范欺诈行为。因此,在百度SDK中融入机器视觉技术,也是提高鉴权能力的一种有效手段。 百度SDK提供的多种鉴权方式,可以有效地保护API服务的安全。通过编写和测试相关的代码,开发者不仅能够确保他们的应用安全合规,还能提升用户体验。而通过分享测试经验和编写技术文章,开发者能够为整个技术社区贡献力量,共同推动人工智能技术的发展和应用。
2025-10-05 18:56:42 66KB 百度SDK 人工智能 机器视觉
1
人工智能(AI)作为21世纪的技术革命代表,正以前所未有的速度渗透到人类生活的方方面面,从提高生产效率到为解决社会问题提供新途径,它的影响无处不在。然而,随之而来的是AI技术在伦理、法律和社会层面所引发的一系列问题,如何确保AI的可信性成为了全球关注的焦点。 《可信人工智能治理白皮书》由安永(中国)企业咨询有限公司与上海市人工智能与社会发展研究会联合撰写,是一份旨在深入探讨AI全球发展态势、监管体系、可信原则、关键问题、企业合规要求、风险治理理论、进阶工具及行业洞察的文件。白皮书提供了全面、深入、客观的参考和指导,尤其在政策制定者、企业管理者、技术开发者及所有关心AI发展的人士中具有重要价值。 白皮书探讨了“可信人工智能”的内涵,并分析了算法透明度、数据安全、伦理道德等方面的挑战。同时,它关注企业AI应用中的合规要求,以及风险治理这一AI发展中的重要议题。在风险管理方面,白皮书详细阐述了风险治理架构的构建和在AI生命周期中实施有效风险管理的方法,特别是如何构建和运营自己的AI管理体系。 在AI技术的发展过程中,技术突破是重要的一环,但更重要的是对人类社会价值观、伦理道德和法律体系的考验。建立一套公正、透明、高效的AI治理体系,是确保AI技术健康发展的关键。白皮书提供的一系列AI治理工具和行业实践案例,旨在为读者提供具体的应用视角以及实际操作中可能遇到的问题和解决方案。 白皮书的结构清晰,从全球AI发展与监管体系讲起,再到人工智能的可信原则,探讨了算法透明度、数据安全、伦理道德等方面面临的关键问题。在企业合规要求部分,白皮书详细介绍了资质监管、算法合规以及内容合规的要求,并在风险管理部分,深入讲解了风险治理架构、生命周期风险治理和人员风险治理。企业AI治理进阶工具部分着重介绍了AI治理国际标准及可信等级管理的实践,为企业的AI治理体系提供了实用指导。 这份白皮书不仅是对AI技术发展现状的深入剖析,也对未来AI的治理和发展路径提出了见解。它不仅是技术的总结,更是对AI技术发展潜在挑战的思考,呼吁社会各界共同努力,以推动AI技术的健康发展,并使之成为推动社会进步的正能量。
2025-10-03 10:42:43 3.99MB
1
unity 机器学习插件 版本V0.7 目前是最新版了 觉得在GitHub下载速度太慢可以用这个
2025-10-02 23:55:57 59.28MB 人工智能 AI unity ML-Agents
1
在当前的人工智能领域,AI大模型已成为推动技术发展的关键力量。AI大模型是指那些参数量级大、基于深度学习技术构建的模型,它们通过大量的数据训练来实现复杂的特征表示学习,并在各种AI任务中表现卓越。本内容从国内主流AI大模型的介绍出发,对这些模型的发展背景、应用范围以及对比分析进行了深入探讨。 AI大模型的发展得益于多个方面:计算能力的显著提升,特别是GPU、TPU等专用硬件的普及,为训练更大规模的模型提供了可能;大数据时代的来临,提供了海量的数据资源,使得AI模型能够获得更全面的学习;以及深度学习技术的不断突破,例如卷积神经网络(CNN)、循环神经网络(RNN)、Transformer等结构的出现,这些技术的进步为AI大模型的性能提升提供了坚实的技术支持。 AI大模型的应用领域非常广泛,包括但不限于自然语言处理、计算机视觉以及语音处理和生成。在自然语言处理领域,AI大模型被用于语言模型、机器翻译、文本生成、情感分析等任务中,它们能够更好地理解和生成人类语言,捕捉语言的复杂性和上下文信息。在计算机视觉方面,AI大模型在图像分类、目标检测、图像生成等任务中表现出色,能够学习视觉特征表示,实现高性能的视觉任务处理。此外,AI大模型也在语音识别、语音合成等语音处理和生成任务中发挥作用,通过更准确的模型建模,捕捉语音信号的复杂性和长时依赖关系。 国内主流的AI大模型中,百度公司推出的文心一言(ERNIE Bot)是一个值得关注的例子。文心一言是基于百度文心大模型技术推出的生成式对话产品,它的技术核心是知识增强型的大模型。该模型已经被广泛应用于搜索、信息流、智能音箱等多种互联网产品中,有效降低了AI应用的门槛,促进了产业智能化的升级。 另一个例子是智源研究院开发的开源AI模型ChatGLM-6B。这个基于Transformer结构的模型,支持中英文对话,能够在智能客服、智能家居、车载语音助手等领域提供高效、便捷的语音交互体验。通过与其他技术的集成,ChatGLM-6B还能实现更丰富的功能,满足用户的多样化需求。 在模型对比分析中,重点关注了各模型在数据处理能力、准确性、实时性以及应用场景方面表现的差异。通过对这些关键性能指标的评估,比如训练速度、推理效率、准确性、召回率和F1分数等,我们可以更全面地了解不同AI大模型的性能优势和局限性。同时,模型的创新性与独特性,包括在架构和技术运用方面的创新,以及在开源、API接口和第三方开发者合作方面的开放态度和创新能力,也是评估的重要方面。 未来AI大模型的发展趋势与挑战也不容忽视。随着技术的不断进步,模型规模可能会继续扩大,导致模型训练和部署所需的资源更加昂贵。此外,模型训练过程中的环境影响、模型泛化能力的提升以及如何实现高效且可靠的模型更新和维护等问题,都是AI大模型发展道路上亟待解决的挑战。 通过上述分析,我们可以看出,AI大模型在理论和应用层面都展现出强大的潜力,但同样面临着不少挑战。随着未来研究的深入和技术的发展,AI大模型有望在更多领域发挥重要作用,为人工智能技术的提升带来新的动力。
2025-10-02 16:02:14 3.74MB 人工智能 AI
1
这是模式识别选修的上机,我用到了tensorflow,matlab。数据集也在里面,为了方便有些数据直接用的库函数调用(没用老师指定的数据,验收时助教也没说),uu们如果缺库函数可能需要配一下(甚至因为我这个是步进运行,之前的运行结果应该还保留着φ(* ̄0 ̄))。 上机内容如下: 第一次 验证算法: 1)K近邻方法分类; 2)最近邻方法分类; 3)分析k值不同情况或不同方式、比例训练样本情况,画出错误率/正确率曲线; 数据: 1)uSPS手写体 2)ucI数据库中sonar数据源 3)UCI数据库中Iris数据 第二次 比较kmeans算法和FCM算法数据集: 1)sonar和lris数据上验证 2)CIFAR图像数据上验证算法 第三次 验证方法:SVM 数据集:Extended YaleB人脸数据库(选做CIFAR-10数据集) 核函数:高斯核和多项式核 核参数可以手动调节或交叉验证确定 第四次 要求:验证bagging和adaboost算法 在CIFAR-10数据集和ex.ended Yale B数据集上组合分类器自己设定
2025-09-29 19:02:47 2.93MB 模式识别 人工智能 tensorflow matlab
1
电站锅炉燃烧过程是电力生产中极为重要的一环,其燃烧效率和排放控制对于整个电站的经济性和环保性能起着决定性的作用。电站锅炉排放的氮氧化物(NOx)是一种主要的空气污染物,其含量高低直接关系到电站环保标准的满足与否。因此,如何在保证高效燃烧的同时减少NOx排放,已经成为电站锅炉运行和优化中亟待解决的问题。 传统的燃烧优化方法往往依赖于锅炉多工况燃烧调整试验,这种方法耗时费力,且难以应对煤种变化和设备改造带来的挑战。这就需要建立一种能够准确模拟锅炉燃烧特性的模型,以指导电站锅炉的运行和控制。近年来,随着计算机和人工智能技术的飞速发展,人工神经网络和机器学习方法在电站锅炉燃烧优化领域得到了越来越多的应用。 本文所提出的最小二乘支持向量机(LS-SVM)方法,是一种新型的机器学习算法,它在传统的支持向量机(SVM)基础上进行改进,通过最小化结构风险原则来提高模型的泛化能力。LS-SVM特别适合于解决电站锅炉燃烧优化中所面对的小样本、非线性以及高维数的问题。LS-SVM通过非线性映射将样本数据映射到高维空间,在这个空间中寻找最优的线性决策函数,通过求解线性方程组来获取模型参数。这种方法计算速度较快,训练时间短,适用于电站锅炉燃烧优化这种需要即时反应和高精度预测的场景。 在建立了基于LS-SVM的电站锅炉燃烧特性模型之后,还面临着多目标优化的问题。即在追求锅炉热效率最大化的同时,还需降低NOx排放量。本文采用的多目标粒子群优化算法(MOPSO),是一种基于群体智能的算法,适用于求解电站锅炉燃烧优化的多目标问题。该算法通过模拟鸟群觅食行为,将可能的解决方案(粒子)在解空间中进行迭代搜索,以期找到最优的Pareto前沿,从而实现多个目标的平衡。与传统的单目标优化方法相比,MOPSO算法能够获得多个候选解,且利用了之前计算的数据,大大降低了计算量。 通过上述方法,本文建立了电站锅炉NOx排放与效率的混合模型,并利用MOPSO算法对该模型进行了优化仿真。结果显示,模型具有调节参数少、运算速度快、结果稳定和预测精度高的优点,能够准确预报锅炉在不同工况下的NOx排放和效率。这为电站锅炉的高效低NOx排放运行提供了理论基础和实用工具,有助于电站实现经济效益和环保要求的双重目标。 关键词电站锅炉、氮氧化物、效率、最小二乘支持向量机(LS-SVM)、多目标粒子群优化算法(MOPSO)所涉及的主要知识点包括: 1. 燃烧优化的必要性:电站锅炉的燃烧优化可以提高效率,降低NOx排放,是实现电力工业经济效益和环保要求的重要手段。 2. 电站锅炉特性模拟的挑战:锅炉设备庞大,运行条件复杂,煤种多变,传统的函数模型难以建立。 3. 最小二乘支持向量机(LS-SVM):一种采用结构风险最小化原则,适合非线性、高维数问题的机器学习方法,有快速训练和高预测精度的优势。 4. 多目标粒子群优化算法(MOPSO):一种能够处理多目标优化问题的群体智能算法,有效提高电站锅炉燃烧优化的效率与环保水平。 5. 混合模型与优化仿真:结合LS-SVM建立的电站锅炉燃烧模型,并使用MOPSO算法进行多目标优化,实现高效低NOx排放的目标。 通过这些知识点的深入理解和应用,电站可以更科学地进行锅炉燃烧优化,从而在保证电力供应稳定的同时,显著降低环境影响,满足日益严格的环保法规要求。
2025-09-24 12:33:49 446KB 首发论文
1
图像融合 M3FD 数据集 论文:Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection 下载链接:https://github.com/JinyuanLiu-CV/TarDAL 数据集:该数据集仅包含整个数据集中的M3FD_Fusion文件 为方便网络不好的同学,现将此数据集进行上传。
2025-09-24 10:41:17 410.28MB 人工智能 数据集 图像融合
1
物联网知识图谱的研究 一、文档概括 文档围绕物联网知识图谱展开了全面的研究,旨在通过对物联网知识图谱的构建与应用研究,实现物联网数据的有效管理和智能化应用。 二、研究背景与意义 物联网作为新一代信息技术的重要组成部分,其发展速度迅猛,对社会经济产生深远影响。物联网知识图谱能够整合物联网设备间的数据关联性,为物联网应用提供了知识层面的支撑,是实现物联网智能化服务的重要基础。 三、研究内容与方法 本研究内容涵盖物联网知识图谱的构建、管理和应用,采用文献研究、案例分析等方法进行深入探讨。研究方法包括对物联网技术、知识图谱理论进行系统梳理,并结合物联网应用场景,设计出一套切实可行的知识图谱构建与应用方案。 四、物联网基础知识 物联网的定义、特点以及关键技术是物联网知识图谱研究的基础。传感器技术、通信技术、数据处理与存储是支撑物联网运行的三大核心技术。物联网的应用领域广泛,包括智能家居、智能交通、智能医疗等多个方面。 五、知识图谱基础理论 知识图谱的定义与结构为研究的理论基础。知识表示方法分为本体论与语义网两种,它们是实现知识图谱中实体间关系表达的关键。知识抽取与融合是构建知识图谱的重要步骤,包括数据预处理、实体识别、关系抽取等多个环节。 六、物联网知识图谱构建 物联网知识图谱构建流程包括知识源选择与处理、知识图谱设计原则、构建实例分析等步骤。知识源的选择与处理关注数据收集与数据清洗,确保数据的质量。知识图谱设计原则强调一致性、完整性和可扩展性,保证知识图谱的稳定性和发展性。构建实例分析则通过具体案例展示知识图谱构建的过程和结果。 七、知识图谱的应用研究 知识图谱的应用研究主要聚焦于智能推荐系统,包括用户行为分析与内容推荐算法。智能推荐系统通过分析用户行为数据,结合知识图谱中的丰富知识,实现更加准确和个性化的推荐。 八、物联网知识图谱的前景展望 随着物联网技术的不断进步,物联网知识图谱将在数据管理、智能化服务等方面发挥越来越重要的作用。未来的研究将继续优化知识图谱的设计,提升其应用价值,为物联网的深入发展提供支撑。
2025-09-23 22:22:48 93KB 人工智能
1
[Morgan Kaufmann] MATLAB GPU 加速计算 教程 (英文版) [Morgan Kaufmann] Accelerating MATLAB with GPU Computing A Primer with Examples (E-Book)
2025-09-22 16:50:50 23.01MB matlab gpu 人工智能 神经网络
1
在深度学习领域,睡眠分期技术的研究已经成为了热门话题,它主要涉及到使用深度学习模型来分析人体在睡眠过程中的脑电图(electroencephalogram, EEG)信号,以此来划分睡眠的不同阶段。EEG信号是睡眠分期的重要依据,因为它们反映了大脑在不同睡眠阶段的活动状态。深度学习技术,尤其是卷积神经网络(Convolutional Neural Networks, CNN),已经成为分析这种时间序列数据的强大工具。 通过使用深度学习模型,研究人员能够更加准确地对睡眠进行分期,这对于诊断和治疗睡眠障碍具有重要意义。例如,睡眠呼吸暂停症候群、失眠症、以及多种神经系统疾病都可以通过睡眠分期的分析来辅助诊断。深度学习的加入,特别是在特征提取和模式识别方面,极大地提高了睡眠分期的自动化水平,减少了人工标注的主观性误差,提高了分期的准确率。 在给出的文件内容中,涉及到几个关键部分。首先是README.md文件,它通常包含了项目的详细说明,包括项目的背景、目标、使用方法和安装指南等。其次是load-dataset.py文件,这个文件可能负责数据集的加载工作,包含了读取和预处理EEG数据集的代码。预处理的步骤可能包括数据清洗、格式转换、标准化等,这些步骤对于提高后续深度学习模型的训练效果至关重要。cnn-eeg-classification.py文件可能包含了核心的深度学习模型实现,其中CNN模型被用于对经过预处理的EEG数据进行特征学习和分类。 深度学习模型的训练和验证通常需要大量的标记数据,因此数据集的构建和管理是一个重要环节。在本项目中,很可能使用了大量经过专业标注的睡眠EEG数据,这些数据对于训练出一个有效的睡眠分期模型是必不可少的。通过使用深度学习框架,如TensorFlow或PyTorch,研究人员可以构建复杂的神经网络结构,并利用GPU进行高效的训练。 此外,深度学习模型的性能评估也是一个不可忽视的部分,它通常包括准确率、召回率、F1分数以及混淆矩阵等指标的计算。通过这些指标,研究人员可以了解模型在各个睡眠阶段分期中的表现,并据此对模型进行调优。 由于深度学习和人工智能技术的迅速发展,睡眠分期技术也在不断进步。目前,不仅限于传统的CNN模型,各种新型的深度学习模型也被应用于EEG信号分析,例如长短期记忆网络(Long Short-Term Memory, LSTM)、门控循环单元(Gated Recurrent Unit, GRU)和一维卷积网络(1D ConvNet)等。这些模型在捕捉时间序列数据的长期依赖关系方面表现出色,因此可能在未来的睡眠分期研究中发挥更大的作用。
2025-09-22 16:22:43 6KB 毕业设计 课程设计 人工智能 yolo
1