基于形状轮廓多模板匹配的C++源码,采用OpenCV和Qt(MSVC2015)开发,支持多目标并行定位、计数、分类功能,亚像素级定位精度与加速运行速度。,基于OpenCV和C++的多模板多目标高精度亚像素定位并行处理源码——支持模板匹配、定位、计数及分类功能开发实战,c++ opencv开发的基于形状(轮廓)多模板多目标的模板匹配源码,可实现定位,计数,分类等等,定位精度可达亚像素级别,运行速度采用并行加速。 开发工具:qt(msvc2015) + opencv6 ,C++;OpenCV;形状(轮廓)多模板多目标模板匹配;定位;计数;分类;亚像素级别定位精度;并行加速;Qt(MSVC2015);OpenCV6。,C++ OpenCV形状多模板匹配源码:亚像素定位并行加速
2025-09-12 01:13:33 2.02MB sass
1
在计算机视觉和图像处理领域,模板匹配是一种基础而关键的技术,它通过在参考图像中搜索与模板图像最为相似的区域来进行目标识别。传统的模板匹配方法主要基于像素值的相似度计算,对于图像的缩放、旋转等变化不够鲁棒。而本项目的目标是通过C++结合OpenCV 4.5库,模拟商业软件Halcon的高级功能,实现一种基于形状的模板匹配算法,该算法不仅能够支持目标图像在尺度和旋转角度上的变化,还能达到亚像素级别的匹配精度。此外,源代码还支持C#语言版本,便于不同开发环境的用户使用。 为了达到这样的技术水平,开发者采用了多种图像处理技术,例如边缘检测、轮廓提取、形状描述符以及特征点匹配等。这些技术的综合运用,提高了模板匹配的准确性,使得算法能够更精确地识别出目标物体的形状和位置,即使在图像中目标物体发生了变形、遮挡或视角改变的情况下。 形状模板匹配是一种高级的图像匹配技术,它通过比较目标图像和模板图像之间的形状特征来进行匹配。与传统的基于像素的模板匹配相比,形状模板匹配具有更强的抗干扰能力,能够处理因物体变形、视角变化等引起的目标图像与模板图像之间的差异。在实现上,形状模板匹配算法通常包括形状特征提取、形状特征描述、形状相似度计算等关键步骤。 形状特征描述是形状模板匹配技术中的核心部分,常见的形状特征描述方法包括傅里叶描述符、不变矩描述符、Zernike矩描述符等。其中,不变矩描述符因其具有旋转不变性、尺度不变性和平移不变性等特性,在模板匹配领域中得到了广泛应用。算法通过提取这些描述符,来表征物体的形状特征,然后通过比较描述符之间的相似度来实现匹配。 在实现亚像素精度方面,通常需要采用更为复杂的插值算法来获取更为精细的匹配结果。例如,可以通过二次插值、三次样条插值等方法来估计最佳匹配位置,从而达到亚像素级别的精确度。这样的高精度匹配对于工业检测、机器人视觉、生物医学图像分析等领域至关重要。 除了技术细节之外,开发者还提供了详尽的文档资料,以帮助用户更好地理解和使用源代码。文档涵盖了算法的设计理念、实现方法以及使用示例,为用户提供了从入门到精通的学习路径。而且,源码开放的特性意味着用户可以自由地对代码进行修改和优化,以满足特定的应用需求。 值得一提的是,项目还支持C#语言,这意味着具有.NET开发背景的开发者也能够轻松地将这种高效的图像处理算法集成到自己的项目中。这对于希望在应用程序中集成先进图像处理功能的开发者来说,无疑是一个巨大的便利。 本项目通过C++和OpenCV实现的基于形状的模板匹配算法,在技术上具有很高的创新性和实用性。它不仅能够处理图像缩放和旋转等复杂变化,还能够实现高精度的匹配,是计算机视觉和图像处理领域中的一项重要成果。
2025-09-05 11:41:33 456KB 正则表达式
1
在图像处理领域,亚像素(Subpixel)定位技术是一种提高边缘检测精度的重要手段。本话题主要探讨了如何利用Zernike moments(泽尼克矩)在MATLAB环境下实现亚像素级别的边缘检测,这对于精确测量和分析图像中的微小细节至关重要。 Zernike moments是一种在圆形或对称形状图像上定义的多项式矩,它具有良好的旋转不变性和形状描述能力。在边缘检测中,Zernike moments可以提供更精确的边缘位置,因为它们可以捕获到边缘轮廓的细微变化。MATLAB作为一种强大的数值计算和可视化工具,为实现这一过程提供了便利的环境。 我们需要加载`zernike7.m`这个MATLAB脚本,该脚本包含了Zernike moments的计算和应用到亚像素边缘检测的具体算法。通常,边缘检测算法如Canny、Sobel等只能提供像素级别的精度,而通过Zernike moments,我们可以进一步细化边缘位置,达到亚像素级别。 在提供的`4.bmp`、`5.bmp`、`6.bmp`、`1.bmp`和`12.bmp`这些图像文件中,我们可以看到不同零件的图像,这些图像可能是用于测试和验证Zernike边缘检测算法效果的样本。每个图像的边缘检测结果可以通过运行MATLAB脚本来获得,这将揭示Zernike方法如何提升边缘定位的准确性。 Zernike边缘检测步骤大致如下: 1. 预处理:对输入图像进行灰度化和噪声去除,通常使用高斯滤波器。 2. 计算Zernike moments:对预处理后的图像,应用Zernike moments公式,生成一系列描述图像形状特征的矩。 3. 边缘检测:通过对Zernike moments的梯度或者零交叉点分析,找到边缘的位置。 4. 亚像素定位:利用Zernike moments的连续性,通过插值或其他优化方法来确定边缘的确切亚像素位置。 通过这种方法,不仅可以提高边缘检测的精确度,还能保持图像的原始形状信息,这对于精密测量和分析微小零件的尺寸至关重要。在实际应用中,例如在半导体制造、生物医学成像等领域,亚像素级别的边缘检测可以显著提升分析结果的可靠性。 Zernike moments结合MATLAB在亚像素边缘检测中的应用,为图像处理带来了一种有效且精确的工具。通过深入理解Zernike矩的数学原理以及MATLAB脚本的实现方式,我们可以更好地优化图像分析过程,从而在科研和工业领域取得更精确的测量结果。
2025-04-24 10:08:02 598KB subpixel zernike
1
在图像处理领域,边缘检测是至关重要的一步,它能够帮助我们识别和定位图像中的边界,这些边界通常对应着图像中的重要特征。本话题主要聚焦于使用MATLAB进行图像边缘检测,特别是Zernike矩在亚像素边缘检测中的应用。Zernike矩是一种描述形状和结构的数学工具,尤其在光学和图像分析中被广泛使用。 我们要理解Zernike矩的基本概念。Zernike矩是从图像的像素强度分布中提取的一组系数,它们能够表征图像的形状特性,如中心位置、旋转不变性和形状参数等。在边缘检测中,Zernike矩的优势在于它们对形状的敏感性,可以精确地捕捉到边缘信息。 亚像素边缘检测是相对于传统像素级边缘检测的一个概念,它能提供比单个像素更精细的边缘定位。在亚像素级别,边缘的位置可以精确到小于一个像素的精度,从而提高边缘检测的准确性和细节分辨率。在MATLAB中,有多种算法可以实现亚像素边缘检测,例如Canny算法、Laplacian of Gaussian (LoG) 方法以及基于Zernike矩的方法。 本资源提供的MATLAB源码可能包含以下步骤: 1. **预处理**:图像通常需要经过归一化、平滑滤波(如高斯滤波)等预处理,以减少噪声并平滑图像。 2. **Zernike矩计算**:对处理后的图像,计算其Zernike矩。这一步涉及对图像的离散采样点进行操作,然后通过特定的数学公式求得各阶Zernike矩。 3. **边缘检测**:利用Zernike矩的特性,确定边缘的位置。这可能包括寻找矩变化的显著点,或者通过拟合Zernike矩来估计边缘位置。 4. **亚像素细化**:在确定了初步边缘位置后,通过某种亚像素定位算法(如梯度、二阶导数或曲线拟合)来提高边缘定位精度。 5. **后处理**:可能会进行边缘连接、边缘细化和噪声去除等后处理步骤,以获得更清晰、连贯的边缘。 视频教程“【图像边缘检测】matlab Zernike矩亚像素边缘检测【含Matlab源码 1536期】.mp4”很可能是对以上过程的详细讲解,包括理论解释、代码实现和实际应用案例。通过学习这个教程和源码,你将能够深入理解Zernike矩在亚像素边缘检测中的作用,并能够应用于自己的图像处理项目。 Zernike矩亚像素边缘检测是一种高级的图像处理技术,结合MATLAB的强大功能,可以在诸如医学影像分析、工业检测、机器人视觉等领域发挥重要作用。通过学习和实践,你将能够掌握这种高效且精确的边缘检测方法,提升图像处理能力。
2024-10-10 10:13:35 1.89MB
1
基于多项式插值的亚像素边缘坐标拟合直线示例, VS2015 MFC. 具体原理可参考 https://blog.csdn.net/yx123919804/article/details/103123071
2024-08-01 19:02:03 250KB OpenCV 直线拟合
1
在摄像机自标定过程中,可根据Harris的检测算法提取对角点。该算法简单有效,非常稳定。在图像旋转、灰度、噪声影响和视点变换的条件下,与其他算子相比,是最稳定的一种点特征提取算子。为了获得亚像素级的角点坐标,需要引入迭代算法进行优化。试验证明该方法可大幅度提高摄像机的标定精度。
2023-03-13 23:26:04 663KB 摄像机自标定 角点 Harris算法 亚像素
1
光斑亚像素中心提取.zip
2023-02-18 13:43:36 3KB 图像处理
1
像点坐标自动提取,使用Matlab软件中图像处理的功能,来实现达亚像素水平的像点定位和坐标的自动获取。
1
用于解决最大内切圆问题的示例应用程序和函数。 与我的其他提交“使用距离变换的最大内切圆”(位于http://www.mathworks.com/matlabcentral/fileexchange/30805-maximum-inscribed-circle-using-distance-transform )不同,该算法是亚像素精确的。 它仅对多边形起作用,而对像点不起作用。 因此,如果多边形以子像素给出,则结果将是准确的。 我使用 O(n log(n)) 算法如下: - 构建多边形的 Voronoi 图。 - 对于多边形内的 Voronoi 节点: - 在 P 中找到到边距离最大的节点。这个节点是最大内切圆的中心。 有关问题本身的更多详细信息,请查看我之前提交的上述内容。 为了加快速度,用Bruno Lunog的更快实现“2D多边形内部检测”替换“inpolygon”功能: http:
2022-08-26 19:56:22 13KB matlab
1
图像相关技术的亚像素位移算法与实验研究.pdf
2022-07-11 14:12:52 7.23MB 文档资料