UPS电源(不间断电源)是一种重要的电气设备,它可以在市电中断时提供应急电力,保障关键电子设备、仪器的持续运行。然而,UPS电源在为用电设备提供保障的同时,其整流电路会在工作中产生谐波电流,从而对电网造成严重的危害。谐波电流不仅会引起电源效率下降,还会造成设备损坏、系统不稳定甚至引发火灾等安全问题。因此,减少UPS电源产生的谐波电流至关重要。 谐波电流主要源自UPS的整流电路。在UPS工作过程中,整流电路将交流电转换成直流电,而这一过程会导致电流波形出现失真,产生高次谐波。这些谐波电流叠加在基波电流之上,形成非正弦波形。由于谐波电流与基波频率不同,它们会对电网和相连的电气设备产生不良影响,如导致变压器、电缆过热,甚至可能引发跳闸、火灾等严重后果。 单相UPS电源的谐波电流主要以3次谐波为主,而3次谐波最容易在零线上叠加,造成零线电流过载。因为零线上通常没有保险装置,过大的电流得不到及时的切断保护,容易引起过热,从而成为火灾的隐患。在信息设备日益普及的今天,零线过热已成为电气火灾防范中不容忽视的问题。 三相UPS电源虽然不会产生3次谐波电流,但会产生以5、7次谐波电流为主的谐波,同样会对电网造成危害,例如变压器和电缆的过热问题,以及导致跳闸等故障。 为了减小UPS电源产生的谐波电流,可以在电源输入端安装谐波滤波器,该设备能够过滤掉大部分的谐波电流。谐波滤波器分为有源滤波器和无源滤波器两种。有源滤波器相较于UPS本身更为复杂,成本较高,可靠性相对较低,因此并不是理想选择。而无源滤波器通常被应用于UPS电源输入端,因其结构简单,成本较低,可靠性较高。 然而,并非所有的无源谐波滤波器都适用于UPS。常规的LC无源谐波滤波器在为特定谐波提供低阻抗通路的同时,也可能导致滤波器过载甚至损坏。此外,LC滤波器可能在调谐频率以外的频率呈现电容性或电感性,容易与系统中的电容或电感发生谐振,导致系统不稳定。因此,针对UPS设计的谐波滤波器需要专门设计,以避免这些问题。专门设计的无源滤波器可以有效减小UPS的谐波电流,同时还能消除电网上的浪涌电压,防止UPS受到雷电浪涌损坏。 例如,航天科工集团706所研制的HTHF和SPHF谐波滤波器就是针对UPS等设备专门开发的。HTHF适用于三相UPS电源,保证总谐波电流畸变率(THID)小于8%,满足GB17625标准要求;SPHF适用于单相UPS电源,保证THID小于15%,同样满足GB17625标准要求。这些滤波器不仅能有效减小UPS的谐波电流,还能消除电网上的浪涌电压,防止UPS因雷电浪涌而损坏。 总结来说,为了减小UPS电源的谐波电流,应在电源输入端安装专门设计的谐波滤波器,以提高电源质量和电网稳定性,保障电子设备安全。使用时要选择合适类型的滤波器,并确保它们能够满足相关标准要求,以达到最优的滤波效果。
2026-02-10 17:20:24 56KB 谐波电流 技术应用
1
KiCad, AB2技术创建的KiCad模块,库和模板 KiCadKiCad模块,库,模板和AB2技术创建的3D 模型。http://www.ab2tech.com 描述因为我们想拥抱一个完全开放的开源解决方案,所以我们开始使用 KiCad 。 它是一个强大的工具,完全能够作为P
2026-02-09 23:06:19 5.9MB
1
ST公司生产的L6561是采用变频峰值电流控制方式的PFC控制器,Boost PFC转换器工作在电感电流临界连续模式(CRM),主开关管零电流、零电压开通。   它的内部电路和典型应用分别如图1(a)、(b)所示。芯片内部电路包括电压放大器VA、乘法器、电流过流检测比较器、触发器和驱动电路等。转换器的输出电压Uo由VA的反相输人端INV通过分压电阻采样,电压补偿网络(图1(b)中为电容C1)跨接在INV和、VA输出端COMP;MULT采样输入整流电压信号,并与COMP信号相乘、乘法器的输出作为峰值电流基准。Boost转换器开关V的电流采样信号(CS端采样)上升到该值时,电流比较器CA及触发器 **电源技术中的PFC集成控制电路L6561** ST公司的L6561是一款专为电源技术设计的功率因数校正(PFC)控制器,它采用变频峰值电流控制策略,优化了Boost PFC转换器的性能。这种转换器在电感电流临界连续模式(CRM)下工作,确保主开关管在电流和电压为零的时刻开通,从而提高能效并减少开关损耗。 L6561内部包含了一系列关键组件,这些组件共同作用以实现精确的电源管理。首先是电压放大器VA,它负责采集转换器输出电压Uo的样本,通过反相输入端INV和分压电阻进行采样。电压补偿网络由电容C1构成,连接在INV和VA的输出端COMP之间,用于稳定系统的电压响应。 乘法器是L6561的另一核心部分,它接收整流后的输入电压信号,并与COMP信号相乘,生成的乘积作为峰值电流基准。这个基准用于控制Boost转换器开关V的电流,以确保电流在设定的峰值范围内波动。 电流过流检测比较器CA与触发器共同协作,监控电流采样信号CS。当电流上升至设定的峰值时,比较器CA触发触发器翻转,驱动器输出端GD变为低电平,关闭开关V。在V关闭期间,电感iL中的电流逐渐下降。通过ZCD(零电流检测)电路,利用输入滤波电感L的辅助绕组检测μL两端的电压,当电压下降到接近零(约2.1V)时,表明电感电流已降为零。此时,电流过零检测比较器翻转,GD端恢复高电平,开关V在零电流和零电压条件下重新开通,实现无损切换。 L6561的这种零电流零电压开通技术不仅减少了开关损耗,还降低了电磁干扰(EMI),提高了系统的整体效率和稳定性。电感L的辅助绕组在开关V关断期间不仅用于检测电流零点,还为L6561芯片自身提供工作电源,实现了自供电。 L6561集成了先进的电源管理技术,其变频峰值电流控制、CRM工作模式、精确的电流和电压控制,以及零电流零电压开通功能,使得它成为高效电源系统设计的理想选择。这种控制器在电源技术中广泛应用于高功率因数、高效率的电源转换器,特别是在工业、数据中心和家用电器等领域。
2026-02-09 16:20:22 95KB 电源技术
1
内容概要:本资源介绍了如何使用飞桨PaddleOCR团队开发的PP-Structure工具,将图片中的数据转换为Excel格式,实现数字化办公中的文档分析和表格识别。 适合人群:适合对数字化办公自动化、OCR技术以及数据结构化转换感兴趣的开发者和办公人员。 能学到什么: ①了解PP-Structure的安装和配置过程; ②掌握如何使用PP-Structure进行版面分析和表格识别; ③学习如何将识别结果输出为Excel文件。 阅读建议:此资源提供了详细的环境配置、代码实现和模型选择指导,适合在实践中逐步学习并深入理解PP-Structure的工作机制。建议结合实际图片数据进行操作,以加深对工具使用和结果分析的理解。
2026-02-09 14:58:18 18.7MB python paddleocr
1
深入解析T型三电平逆变器SVPWM调制技术:仿真实践与教学文档详解,T型三电平逆变器SVPWM调制及仿真的全面解析与实践学习资源包,T型三电平逆变器SVPWM调制学习 仿真是基于T型三电平逆变器的主电路,开关控制采用SVPWM的调制。 自搭建了SVPWM调制模块,可以用于对照资料参照学习SVPWM调制。 想学习svpwm和T型逆变器的同学可以参考学习 文件包含: [1]一个仿真 [2]SVPWM调制的教学文档 [3]相关参考文献 ,T型三电平逆变器; SVPWM调制; 仿真; 教学文档; 参考文献,T型三电平逆变器SVPWM调制仿真学习指南
2026-02-09 11:25:01 1.27MB 哈希算法
1
随着电网的快速发展,研究具有更宽的工作频段、能够对多种振荡模式提供合适阻尼的多频段电力系统稳定器(Multiband PSS,PSS4B)对减少电力系统低频振荡具有重大意义。本文首先分析了电力系统稳定器PSS4B的结构、性能,在实验室完成了PSS4B的硬件和软件设计,并通过动模试验对PSS4B的性能进行验证。动模试验表明所设计的PSS4B相比传统PSS在抑制低频振荡具有优越的性能,在工作区间具有良好的适应性,同时说明所设计PSS4B的有效性。
1
知识点: 1. 江西省职业院校技能大赛及赛项介绍:2024年江西省职业院校技能大赛包含针对高职组的机器人系统集成应用技术项目,参赛者需完成一系列与机器人系统集成相关的任务。 2. 赛项要求和评分标准:参赛选手在5小时内完成规定内容,赛场上提供2台计算机用于编程和仿真调试,要求参赛者将程序文件保存到指定文件夹中。评分标准涵盖竞赛任务的完成度、职业素养等,违规行为将导致扣分或取消资格。 3. 机器人系统集成背景:参赛者需要对现有机器人系统进行升级改造,以适应产品零件生产的单元升级改造和不同类型产品零件的共线生产,实现智能化和柔性化生产。 4. 产品生产工艺及系统布局:生产对象为汽车行业轮毂零件,需完成粗加工后的铸造铝制零件生产。参赛者需要设计合适的系统布局及控制系统结构,满足产品零件在各加工单元中的准确定位和生产需求。 5. 控制系统和通讯方案设计:根据产品生产工艺流程,合理设计各硬件单元的布局分布,绘制控制系统布局方案及通讯拓扑结构图,确保各功能单元能够通过工业以太网通讯方式连接到总控单元的PLC上。 6. 虚拟仿真系统的搭建和定义:在虚拟调试软件中搭建机器人集成应用系统,定义各传感器、指示灯以及状态机的具体工作模式和参数,以模拟实际生产环境。 7. 工具和设备的使用规范:参赛者需根据功能要求选择合适的工具完成任务,同时,赛项要求严格遵守机械电气工艺规范性、耗材使用环保性、功耗控制节能性,以及赛场纪律、安全和文明生产等职业素养。 8. 预防措施和安全注意事项:对于参赛过程中可能出现的设备损坏、违规操作等情况,赛项有明确的处罚措施,包括取消资格和成绩无效等严重后果。 9. 资料和文件管理:参赛者需在竞赛过程中妥善管理程序文件、图纸和相关资料,防止损坏、丢失或带离赛场,以确保数据安全和赛事的公平性。 10. 生产对象和工艺要求细节:赛事中的生产对象为汽车轮毂零件,其生产过程中需注意正面和背面定位基准、RFID 电子信息区域、零件缺陷表征区域和数控加工区域的布置和识别。 总结以上内容,江西省职业院校技能大赛中的机器人系统集成应用技术赛项要求参赛者具备机器人系统设计、控制编程、仿真调试和生产管理等多方面的能力,以满足智能制造和柔性化生产的需求,同时强调了技术应用的合理性、工具操作的规范性和职业素养的重要性。
1
### 2024年广西区职业院校技能大赛高职组“机器人系统集成应用技术”赛项竞赛任务书解析 #### 一、赛事概览 **标题:** 2024年广西区职业院校技能大赛高职组“机器人系统集成应用技术”赛项竞赛任务书(学生赛)样卷 **描述:** 该文档是针对2024年广西区职业院校技能大赛高职组“机器人系统集成应用技术”赛项竞赛任务书的一个样本版本,旨在为参赛选手提供明确的比赛规则和任务要求。 **标签:** 机器人、系统集成、应用技术 #### 二、比赛要求与规则 - **任务书完整性:** 确保任务书完整无缺页、字迹清晰。若发现问题,应及时向裁判报告并更换。 - **时间限制:** 完成任务书规定内容的时间限制为5小时。 - **设备配置:** 提供2台计算机供选手使用,参考资料位于“D:\参考资料”文件夹中,所有创建的程序文件需保存至“D:\技能竞赛”文件夹。 - **信息安全:** 不得在任务书中记录学校、姓名等个人信息或与竞赛无关的内容。 - **设备保护:** 避免因人为因素损坏竞赛设备,否则可能取消比赛资格。 - **资料管理:** 禁止损毁、丢弃或带走与比赛相关的资料,否则取消比赛资格。 - **违规处理:** 违反规定的行为将根据评分表进行扣分。 #### 三、任务背景 企业希望通过机器人系统的集成升级,实现零件生产的柔性化和智能化,以适应不同类型产品零件的共线生产需求。具体包括以下方面: - **集成需求:** 基于智能制造技术,整合工业机器人、视觉识别、数控系统、RFID等设备,实现高效生产。 - **通讯方式:** 采用工业以太网通讯完成设备控制与信息采集。 - **管理系统:** 利用人机交互系统和MES系统实现生产全流程监控与优化。 - **集成任务:** 设计、安装、调试机器人系统,并完成试生产验证。 #### 四、生产对象 - **零件描述:** 主要为汽车行业的轮毂零件,已完成粗加工的半成品铸造铝制零件。 - **定位基准:** 产品零件通过轮廓和定位基准实现准确放置。 - **工具选择:** 需要根据功能要求选择合适的工具来实现正面和背面的拾取。 #### 五、职业素养评估 - **技术应用:** 合理性和规范性。 - **工具操作:** 规范性。 - **工艺标准:** 机械电气工艺的标准性。 - **环保耗材:** 使用环保材料。 - **能耗控制:** 节能性。 - **赛场纪律:** 遵守比赛规则和安全文明生产。 #### 六、模块一:机器人系统方案设计和仿真调试 - **任务1:** 系统方案设计和仿真调试 - **方案设计** - 根据产品生产工艺流程,合理规划各单元布局分布。 - 绘制布局方案图,标注各单元名称。 - 设计控制系统结构。 - 绘制控制系统通讯拓扑结构图,标明设备名称、通讯方式和地址。 - **仿真调试** - 在虚拟调试软件中构建机器人集成应用系统。 - 定义传感器功能,使其能够检测产品零件。 - 定义指示灯的颜色状态。 - 定义分拣单元气缸的状态机,包括运动模式、最小最大值、方向和状态设置。 #### 七、总结 本次比赛旨在考核参赛选手在机器人系统集成方面的综合能力,包括但不限于方案设计、系统仿真、实际操作等方面。通过对上述任务的解析可以看出,比赛不仅要求选手具备扎实的专业知识和技术能力,还需要具备良好的团队协作能力和职业素养。此外,比赛中还强调了技术创新和环保意识的重要性,这些都是未来智能制造领域不可或缺的能力。对于参赛选手而言,这是一次宝贵的学习机会,也是对未来职业生涯的一次重要准备。
2026-02-08 16:22:48 722KB 机器人 系统集成 应用技术
1
STM32端无人船/无人车程序是基于STMicroelectronics的STM32微控制器系列的嵌入式系统软件,主要用于实现无人水面或地面车辆的自主控制。STM32是一款广泛应用的32位微控制器,以其高性能、低功耗和丰富的外设接口而著名。这个项目不仅能够与树莓派(Raspberry Pi)这样的上位机配合工作,还可以独立运行,展示了STM32在智能硬件领域的强大功能。 项目的核心部分是STM32F103型号的微控制器,它采用了ARM Cortex-M3内核,具有高运算能力和实时响应特性,非常适合用于无人系统的控制任务。STM32F103集成了多个定时器、串行通信接口(如USART、SPI和I2C)、ADC和GPIO等,为无人船/无人车的传感器数据采集、电机控制、无线通信等功能提供了硬件基础。 配合树莓派作为上位机,可以实现更高级别的决策和规划功能。树莓派是一种开源硬件平台,搭载了Linux操作系统,具有强大的计算能力,能够处理复杂的算法和数据处理任务。通过串行通信接口(如UART),树莓派可以发送指令给STM32,同时接收STM32上传的传感器数据,实现远程控制和状态监控。 无人船/无人车程序的设计通常包括以下几个关键模块: 1. **传感器数据采集**:使用各种传感器(如陀螺仪、加速度计、磁力计、GPS、超声波传感器等)获取车辆状态和环境信息。 2. **控制算法**:根据传感器数据,通过PID控制或其他控制理论实现姿态控制、路径规划和避障功能。 3. **电机驱动**:通过PWM信号控制无刷电机或伺服电机,实现车辆的前进、后退、转向等动作。 4. **无线通信**:利用蓝牙、Wi-Fi或4G模块进行远程控制和数据传输,实现无线遥控或自主导航。 5. **电源管理**:有效管理和优化电池使用,确保系统长时间稳定运行。 英伟达Jetson Nano也是可能的上位机选项,它是一款小巧但性能强大的AI开发板,适合于需要机器学习和计算机视觉应用的场合。与STM32结合,可以实现更智能的行为,例如目标识别、环境感知和自主决策。 在USV-STM32F103-part-master文件夹中,我们可以期待找到以下内容: 1. **源代码**:包括STM32的HAL库驱动代码、控制算法实现、通信协议栈等。 2. **配置文件**:如头文件、配置文件,用于设置微控制器的工作模式和外设参数。 3. **编译脚本**:用于构建和烧录程序到STM32芯片的工具链设置。 4. **文档**:可能包含项目介绍、使用指南和API参考,帮助用户理解和使用代码。 5. **固件**:编译后的二进制文件,可直接烧录到STM32微控制器。 这个项目提供了一个集成的解决方案,使得开发者可以快速搭建一个具备自主控制能力的无人船或无人车平台,通过不断优化和扩展,可以应用于科研、教育、环保监测、搜救等多种场景。
2026-02-08 13:18:33 853KB stm32 前沿技术 智能硬件
1
考虑到我国实施的不停车收费系统采用的是双片式车载电子标签,这就需要车载电子标签有较强的电源模块为工作模块(读卡模块、DSRC接收发射模块等)工作提供足够的电力。传统的车载电子标签一般采用3.7V高性能锂电池,使用时间一般在两年左右。 太阳能车载电子标签OBU是现代智能交通系统中的一个重要组成部分,主要应用于不停车收费系统(ETC)。这种技术旨在提高道路交通效率,减少拥堵,通过利用太阳能来为车载电子标签提供持续可靠的电力支持。 传统的车载电子标签通常依赖于3.7V高性能锂电池,其使用寿命大约在两年左右。然而,随着太阳能技术的发展,新型的太阳能车载电子标签引入了更高效且环保的能源解决方案。它们主要由以下几个关键功能模块组成: 1. **电源模块**:太阳能车载电子标签采用4.2V 270mAh(或650mAh)可充式锂离子电池,结合强光型太阳能充电模块和外接式充电器。这种设计确保了电池的长久寿命,充放电次数超过500次,使用期限可达到7年以上。 2. **太阳能充电模块**:配备0.048W的强光型太阳能电池板,具有10mA±1mA的电流输出,开路电压4.8V,晶片转换率为15%,预期使用寿命超过10年。此外,该模块具备过流、过温、欠压、过充和短路保护功能,有效防止电池损坏,延长设备使用寿命。 3. **电量监测与报警**:当电量低于设定阈值时,系统会触发低电量报警,提醒用户注意电池状态。 在实际应用中,太阳能电子标签的电力消耗和充电效率可通过以下方式计算: - **交易工作耗电**:非接触CPU卡交易期间,平均工作电流约为60mA,交易时间250ms;预读卡阶段工作电流50mA,等待时间工作电流10mA。 - **太阳能充电效率**:根据光照条件,太阳能充电电流在2mA到10mA之间,一天内可以补充16mAH到20mAH的电能。 - **自放电速率**:电子标签在无操作状态下的自放电电流小于5μA。 这些计算表明,即使在频繁交易的情况下,太阳能充电也能快速补充电子标签的电量需求。例如,每天10次交易,只需6到12分钟的充足阳光即可满足一天的工作电量;而每天50次交易,充电时间也仅需15到30分钟。在光照不足的情况下,还可以使用外接便携式充电器进行充电,以应对连续阴雨天的情况。 在实际测试中,如东海太阳能电子标签(型号:TQXS6-SD-OBU-II)已经通过了国家交通安全设施质量监督检查中心的相关检测,证明了其在太阳能充电方面的性能。在江苏省的ETC设备招标测试中,该电子标签在经过8小时日光充电后,能够支持1000次以上的非接触CPU卡连续交易,充分验证了太阳能充电设计的有效性。 太阳能车载电子标签OBU通过创新的电源管理和太阳能充电技术,实现了更持久、更环保的运行方式,为车辆提供了稳定、高效的ETC服务,同时也降低了维护成本,提高了道路通行效率。这一技术的应用不仅有助于提升交通系统的智能化水平,也是可持续交通发展的重要一步。
2026-02-08 09:56:28 64KB 车载电子标签 技术应用
1