【内容概要】 本程序是一款基于Python编写的微信机器人,可用于实现自动回复、关键词回复等功能,让用户在不同场景下更加方便快捷地使用微信。 【适合人群】 该程序适合小白学习源码,也适合需要经常使用微信进行沟通、交流的人群,尤其适用于需要管理多个微信账号或需要定制化个性化回复的用户。 【用途】 通过本程序,用户可以自定义关键字和对应回复,支持自动识别消息类型,从而实时快速地回复微信好友的消息。此外,用户还可以设置定时发送、自动接受好友申请等功能,更加高效地管理微信。 【建议】 为了获得更好的使用体验,请确保你的微信账号已登录到安装了程序的设备上,并设置好微信相关的权限。同时,我们建议所有操作均应遵守微信官方的相关规定,以避免不必要的风险和麻烦。
2026-01-30 15:54:01 337KB 微信 python 人工智能
1
在当前的IT领域,人工智能(AI)已经成为了一个炙手可热的研究方向,而深度学习作为AI的一个重要分支,已经在诸多领域取得了显著成果。本项目聚焦于“基于深度学习的影像学报告多模态检索”,这涉及到如何利用深度学习技术处理和理解医学图像,并通过多模态信息提高检索效率和准确性。 多模态检索是指结合不同类型的数据源,如图像、文本、声音等,以提供更全面、精确的信息检索服务。在医学影像学中,多模态通常意味着结合不同的成像技术,如MRI(磁共振成像)、CT(计算机断层扫描)或PET(正电子发射断层扫描)等,来获取病患的多角度、多层次信息。 深度学习是实现这一目标的关键工具。它模仿人脑神经网络的结构,构建深层的神经网络模型,如卷积神经网络(CNN)、循环神经网络(RNN)以及它们的变种,如Transformer等,用于学习和理解复杂的特征。在影像学报告的检索中,深度学习模型可以学习到图像中的结构特征和文本中的语义信息,从而实现对病患状况的有效表示。 具体到“基于深度学习的影像学报告多模态检索”项目,可能涉及以下几个关键知识点: 1. **深度学习模型的构建**:首先需要设计并训练一个能够同时处理图像和文本的深度学习模型。这可能包括将CNN用于图像特征提取,将LSTM或GRU用于文本信息的捕捉,再通过融合层将两种模态的信息整合。 2. **预处理技术**:在输入数据进入深度学习模型之前,需要进行预处理,例如图像的归一化、增强,文本的分词、词嵌入等。 3. **特征融合**:如何有效地融合图像和文本的特征是多模态检索的核心。可以采用注意力机制或其他融合策略,确保关键信息在检索过程中得到优先考虑。 4. **检索算法**:检索算法的选择和优化也是项目的关键,如使用余弦相似度、欧式距离或其他深度学习的匹配方法来衡量查询与数据库中样本的相似性。 5. **评估指标**:为了衡量检索系统的性能,通常会使用准确率、召回率、F1分数等指标,以及可能的人工评估,确保检索结果的临床有效性。 6. **数据集**:训练和测试模型需要大量的标注数据,这可能包括医学图像和对应的报告。这些数据可能来自于公开的数据集,如MIMIC-CXR、CheXpert等,或者医疗机构的内部数据。 7. **模型优化与部署**:优化模型以提高效率和准确性,并将其部署到实际的医疗系统中,需要考虑到实时性、资源消耗和隐私保护等问题。 这个项目对于提高医疗诊断效率、辅助医生决策具有重要意义。通过深入研究和实践,我们可以期待未来深度学习驱动的多模态检索系统能为临床带来革命性的变化。
2026-01-30 13:20:11 208.4MB 人工智能 深度学习 多模态检索
1
人工智能教育在中小学的应用和前景展望(1).pptx
2026-01-29 20:10:15 4.99MB
1
内容概要:本文档是由国际标准化组织(ISO)与国际电工委员会(IEC)联合发布的第一版《ISO/IEC 42001:2023 信息技术 — 人工智能 — 管理系统》,旨在为各类型组织提供在使用或开发AI产品和服务时建立、执行、维护和不断改进AI管理系统(AIMS)的具体标准与指导方针。文中涵盖了从理解组织背景及其相关方需求到确立治理架构、规划风险管理措施以及支持操作运行等多个关键环节,并提供了有关持续改进建议。此外还包括附录,涉及参考控制目标、实施指南及相关风险评估方法等内容。该文档适用于所有采用或计划引入AI技术的产品或服务提供商。 适合人群:从事信息技术安全管理工作的专业人士、AI技术研发团队成员、企业管理层决策者以及负责企业质量管理体系建设的人员。 使用场景及目标:帮助组织机构在其运营过程中负责任地应用AI技术,确保满足合规性和预期利益的同时,提升内部运作效率;识别潜在风险并通过采取适当预防手段加以缓解;明确角色责任分工,提高透明度和信任感。 其他说明:该标准不仅限于某特定行业内的公司,而是广泛应用于各类性质、规模的企业之中,为它们在制定相关政策时提供了一个统一而全面的基础框架。
2026-01-29 11:07:09 1.18MB 人工智能 Risk Management
1
该指南适用于 Hi3519D V500、Hi3516D V500、Hi3516C V608、Hi3516C V610 等产品版本,主要面向技术支持工程师和软件开发工程师。文档以 Hi3519DV500 为例进行描述,Hi3519DV500 与 Hi3516DV500 内容一致,且说明 cmos_ex.h 在 Hi3516CV610 芯片上对应文件为 cmos_param.h。 文档内容结构丰富,包含前言、PQ 调优文档关系说明、ISP 系统概述、图像质量调优总体概述、模块介绍、AIISP 调试指南等部分。前言部分介绍了文档的版本、发布日期、版权信息、商标声明、注意事项、适用产品、读者对象、符号约定及修改记录等;PQ 调优文档关系说明部分介绍了与该指南相关的其他文档,如《ISP 开发参考》《ISP 颜色调优说明》等;ISP 系统概述部分包括功能简介、ISP 功能框图及各模块简介;图像质量调优总体概述部分针对录像机应用场景,分别介绍了线性模式和 WDR 模式的图像质量调优,涉及亮度、色彩、对比度、清晰度和噪声等维度的调试;模块介绍部分详细阐述了 Sharpen、Demosaic、BayerSharpen、NR、DPC、DRC 等多个模块的功能描述、关键参数和调试步骤;AIISP 调试指南部分则介绍了 AIBNR、AIDRC、AI3DNR 的调试方法,包括概述、关键参数、调试步骤及注意事项等。 此外,文档还包含插图目录和表格目录,方便用户查阅相关图表信息,且修改记录详细记载了从版本 01 到 06 的历次修改内容,如章节调整、内容添加、版本升级等,便于用户了解文档的更新轨迹。
2026-01-28 16:33:08 13.65MB 人工智能
1
文档包括了人工智能介绍、AI质量特征、功能表现度量、神经网络和测试、专属质量特征、系统测试环境等内容,是开展人工智能测试的综合性文档。 第一章:人工智能介绍。 第二章:基于人工智能的系统的质量特征。 第三章:机器学习(ML)-总览。 第四章:机器学习-数据。 第五章:机器学习功能表现度量。 第六章:机器学习-神经网络和测试。 第七章:测试基于人工智能的系统总览。 第八章:测试人工智能专属质量特征。 第九章:测试基于人工智能的系统的方法与技术。 第十章:基于人工智能的系统的测试环境。 第十一章:使用人工智能进行测试。 **认证测试工程师 人工智能测试大纲概述** ISTQB(国际软件测试认证委员会)推出的"CT-AI-1.0-CN-1.0"是专门针对人工智能测试的认证测试工程师大纲,旨在为专业人士提供全面的AI测试知识框架。此大纲涵盖了从人工智能的基础概念到深度学习测试、模型测试等高级主题,确保测试工程师能够有效地评估和验证AI系统的质量和性能。 ### 1. 人工智能介绍 这一章节介绍了人工智能的基本概念,包括人工智能的定义、分类(如弱AI与强AI)以及它在各个领域的应用。同时,会讨论AI系统的工作原理和组成,以便测试工程师理解如何进行有效的测试。 ### 2. AI质量特征 本章深入探讨了基于人工智能系统的质量特性,如准确性、可靠性、可解释性、公平性和隐私保护。这些特性对于评估AI系统的性能至关重要,因为它们直接影响到用户信任和系统接受度。 ### 3. 机器学习总览 机器学习是AI的一个关键分支,本章将阐述机器学习的基本概念,如监督学习、无监督学习和强化学习,并介绍主要的算法,如决策树、随机森林、支持向量机等。 ### 4. 机器学习-数据 数据对于训练有效的AI模型至关重要。本章关注数据的质量、准备和预处理,包括缺失值处理、异常检测、数据清洗以及特征工程等,这些都是保证机器学习模型性能的关键步骤。 ### 5. 机器学习功能表现度量 这一部分将介绍各种用于评估机器学习模型性能的度量,如准确率、精确率、召回率、F1分数、ROC曲线等,以及如何根据业务需求选择合适的度量标准。 ### 6. 机器学习-神经网络和测试 神经网络是深度学习的基础,本章讲解神经网络的结构、训练过程以及测试策略,包括激活函数、损失函数、反向传播等。此外,还会讨论深度学习模型的验证、调参和模型泛化能力的测试方法。 ### 7. 测试基于人工智能的系统总览 本章概述了AI系统测试的全面流程,包括测试策略、测试设计、测试执行和结果分析。强调了黑盒测试、白盒测试以及灰盒测试在AI系统中的应用。 ### 8. 测试人工智能专属质量特征 AI系统具有独特的一系列质量特性,如可解释性测试(XAI)、公平性测试、鲁棒性测试和安全性测试。这部分会详细介绍如何针对这些特性进行测试。 ### 9. 测试基于人工智能的系统的方法与技术 这里将讨论特定的测试技术和工具,如模拟测试、数据增强、模型对比和AI性能监控,以提升测试效率和效果。 ### 10. 基于人工智能的系统的测试环境 测试环境的构建对于AI测试至关重要。本章会涵盖模拟和仿真环境的设置,以及如何创建和管理数据集以模拟真实世界场景。 ### 11. 使用人工智能进行测试 大纲探讨了如何利用AI技术改进测试过程,如自动化测试脚本生成、AI驱动的测试用例设计以及测试优化。 大纲还强调了持续学习和适应快速变化的AI领域的重要性,以及测试工程师在道德和法规方面的责任,以确保AI系统的安全和合规性。 通过这个大纲,认证测试工程师将具备在实际项目中实施高效、全面的人工智能测试的能力,确保AI系统的高质量和可靠性。
2026-01-27 10:39:53 4.03MB 人工智能 模型测试
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2026-01-25 14:40:41 169.29MB python 人工智能 ai
1
kaggle机器学习竞赛泰坦尼克号船员数据集,原网址https://www.kaggle.com/c/titanic
2026-01-23 10:13:53 83KB 人工智能 机器学习 kaggle 数据集
1
本文研究了改进免疫算法与HFSS联合仿真技术在天线多目标优化中的应用。免疫算法是一种模拟生物免疫系统机制的优化算法,它在处理复杂的多目标优化问题上显示出独特的性能和优势。本文首先对免疫算法和HFSS联合仿真技术进行了介绍,包括免疫系统的基本原理、免疫算法的类型及特点,以及高频电子系统分析软件HFSS的功能和应用范围。 随后,文章详细探讨了天线多目标优化问题,解释了多目标优化的概念以及天线设计中常见的多目标优化问题。在改进免疫算法的研究中,本文阐述了其理论基础和主要方法,特别是在天线优化模型的构建和实验环境搭建中的应用。 此外,文章还探讨了HFSS联合仿真技术与改进免疫算法的结合,分析了深度学习与改进免疫算法结合的可能性及其在HFSS联合仿真技术中的应用。通过实际天线性能对比分析,验证了改进免疫算法在天线多目标优化中的有效性,并对算法的收敛性能进行了评估。 文章总结了主要研究成果,并对未来发展进行了展望。本文的研究成果不仅有助于提高天线设计的性能,也为其他领域的多目标优化问题提供了有效的解决方案和理论支持。 研究背景表明,随着无线通信技术的快速发展,对天线设计提出了越来越高的要求,包括更好的辐射效率、更宽的带宽和更高的增益等。在这样的背景下,寻找一种高效、精确的天线优化方法显得尤为重要。 天线多目标优化问题在设计过程中需要解决多个参数和指标的优化,常规的优化方法在处理这类问题时往往存在效率低下、易陷入局部最优等问题。而改进免疫算法通过模拟生物免疫系统的多样性和高效性,能够处理复杂的多目标优化问题,从而克服了传统优化方法的不足。 HFSS联合仿真技术是一种高度集成的高频电磁场仿真软件,能够模拟和分析复杂的高频电子系统,包括天线设计。它能够提供精确的仿真结果,为天线设计提供理论依据。将改进免疫算法与HFSS联合仿真技术结合起来,可以充分利用两者的优势,提高天线优化的效率和精度。 改进免疫算法在天线多目标优化中的应用,通过改进算法的参数设置、种群规模和进化策略等,进一步提高了算法的搜索效率和解的多样性。同时,结合HFSS仿真技术,可以在算法的每一代中对天线模型进行精确仿真,从而有效地评估解的质量,进一步指导算法搜索的方向。 通过实验环境搭建与数据采集,本文在实际应用中验证了改进免疫算法与HFSS联合仿真技术在天线多目标优化中的有效性。实验结果表明,该方法能够在较短的时间内找到满足设计要求的天线结构参数,优化后的天线性能得到了显著提升。 展望未来的研究方向,本文提出了一些可能的改进措施和探索领域,例如算法的进一步优化、处理更复杂的多目标优化问题,以及在其他工程问题中的应用等。这将为相关领域的研究提供新的思路和方法。
2026-01-22 20:39:26 96KB 人工智能
1