[machine_learning_mastery系列]machine_learning_algorithms_from_scratch(with code)

上传者: zwxeye | 上传时间: 2021-09-06 22:29:20 | 文件大小: 1.89MB | 文件类型: ZIP
Welcome to Machine Learning Algorithms From Scratch. This is your guide to learning the details of machine learning algorithms by implementing them from scratch in Python. You will discover how to load data, evaluate models and implement a suite of top machine learning algorithms using step-by-step tutorials and sample code. Machine learning algorithms do have a lot of math and theory under the covers, but you do not need to know why algorithms work to be able to implement them and apply them to achieve real and valuable results. From an applied perspective, machine learning is a shallow field and a motivated developer can quickly pick it up and start making very real and impactful contributions. This is my goal for you and this book is your ticket to that outcome.

文件下载

资源详情

[{"title":"( 95 个子文件 1.89MB ) [machine_learning_mastery系列]machine_learning_algorithms_from_scratch(with code)","children":[{"title":"machine_learning_algorithms_from_scratch","children":[{"title":"README.txt <span style='color:#111;'> 586B </span>","children":null,"spread":false},{"title":"machine_learning_algorithms_from_scratch.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"code","children":[{"title":"chapter_10","children":[{"title":"contrived-dataset.xlsx <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"estimate_weights.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"sonar.all-data.csv <span style='color:#111;'> 85.72KB </span>","children":null,"spread":false},{"title":"perceptron_sonar.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"perceptron_predictions.py <span style='color:#111;'> 730B </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_18","children":[{"title":"stacking_sonar.py <span style='color:#111;'> 5.63KB </span>","children":null,"spread":false},{"title":"sonar.all-data.csv <span style='color:#111;'> 85.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_06","children":[{"title":"harness_cross_validation.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"harness_train_test.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"pima-indians-diabetes.csv <span style='color:#111;'> 22.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_17","children":[{"title":"random_forest_sonar.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"sonar.all-data.csv <span style='color:#111;'> 85.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_16","children":[{"title":"bagging_sonar.py <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"sonar.all-data.csv <span style='color:#111;'> 85.72KB </span>","children":null,"spread":false},{"title":"subsample.py <span style='color:#111;'> 939B </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_13","children":[{"title":"get_neighbors.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"make_predictions.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"contrived-dataset.xlsx <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"euclidean_distance.py <span style='color:#111;'> 692B </span>","children":null,"spread":false},{"title":"abalone.csv <span style='color:#111;'> 187.38KB </span>","children":null,"spread":false},{"title":"knn_classification_abalone.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"knn_regression_abalone.py <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_11","children":[{"title":"make_prediction.py <span style='color:#111;'> 883B </span>","children":null,"spread":false},{"title":"data_banknote_authentication.csv <span style='color:#111;'> 45.31KB </span>","children":null,"spread":false},{"title":"split_dataset.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"create_tree.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"cart_banknote.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"contrived_dataset.xlsx <span style='color:#111;'> 47.75KB </span>","children":null,"spread":false},{"title":"gini_split.py <span style='color:#111;'> 797B </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_07","children":[{"title":"insurance-dataset.xlsx <span style='color:#111;'> 42.62KB </span>","children":null,"spread":false},{"title":"simple_linear_regression_contrived.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"contrived-dataset.xlsx <span style='color:#111;'> 36.67KB </span>","children":null,"spread":false},{"title":"calculate_coefficients.py <span style='color:#111;'> 856B </span>","children":null,"spread":false},{"title":"mean_and_variance.py <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"simple_linear_regression_insurance.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"insurance.csv <span style='color:#111;'> 495B </span>","children":null,"spread":false},{"title":"covariance.py <span style='color:#111;'> 568B </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_09","children":[{"title":"logistic_regression_diabetes.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"contrived-dataset.xlsx <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"estimate_coefficients.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"pima-indians-diabetes.csv <span style='color:#111;'> 22.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_03","children":[{"title":"split_train_test.py <span style='color:#111;'> 583B </span>","children":null,"spread":false},{"title":"cross_validation_split.py <span style='color:#111;'> 629B </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_14","children":[{"title":"train_codebook_vectors.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"best_matching_unit.py <span style='color:#111;'> 950B </span>","children":null,"spread":false},{"title":"contrived-dataset.xlsx <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"lvq_ionosphere.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"euclidean_distance.py <span style='color:#111;'> 692B </span>","children":null,"spread":false},{"title":"learning_rate.xlsx <span style='color:#111;'> 41.75KB </span>","children":null,"spread":false},{"title":"ionosphere.csv <span style='color:#111;'> 74.67KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_01","children":[{"title":"load_csv_better.py <span style='color:#111;'> 476B </span>","children":null,"spread":false},{"title":"load_csv.py <span style='color:#111;'> 392B </span>","children":null,"spread":false},{"title":"convert_string_to_int.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"pima-indians-diabetes.csv <span style='color:#111;'> 22.73KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"convert_string_to_float.py <span style='color:#111;'> 778B </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_08","children":[{"title":"contrived-dataset.xlsx <span style='color:#111;'> 36.67KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 383B </span>","children":null,"spread":false},{"title":"coefficients.py <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"linear_regression_wine_quality.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"winequality-white.csv <span style='color:#111;'> 258.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_05","children":[{"title":"random_predictions.py <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"zero_rule_classification.py <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"zero_rule_regression.py <span style='color:#111;'> 531B </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_02","children":[{"title":"dataset_min_max.py <span style='color:#111;'> 442B </span>","children":null,"spread":false},{"title":"normalize_diabetes.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"standardize_contrived_dataset.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"normalize_contrived_dataset.py <span style='color:#111;'> 713B </span>","children":null,"spread":false},{"title":"pima-indians-diabetes.csv <span style='color:#111;'> 22.73KB </span>","children":null,"spread":false},{"title":"standardize_diabetes.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"statistics_contrived_dataset.py <span style='color:#111;'> 845B </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_15","children":[{"title":"seeds_dataset.csv <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false},{"title":"backpropagation_seeds.py <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"contrived-dataset.xlsx <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"initialize_network.py <span style='color:#111;'> 562B </span>","children":null,"spread":false},{"title":"forward_propagate.py <span style='color:#111;'> 983B </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"train_network.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"backpropagate_error.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_12","children":[{"title":"gaussian_pdf.py <span style='color:#111;'> 448B </span>","children":null,"spread":false},{"title":"summarize_dataset.py <span style='color:#111;'> 966B </span>","children":null,"spread":false},{"title":"summarize_by_class.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"contrived_dataset.xlsx <span style='color:#111;'> 43.54KB </span>","children":null,"spread":false},{"title":"probabilities_by_class.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"naive_bayes_iris.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"separate_by_class.py <span style='color:#111;'> 826B </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_04","children":[{"title":"mean_absolute_error.py <span style='color:#111;'> 380B </span>","children":null,"spread":false},{"title":"classification_accuracy.py <span style='color:#111;'> 419B </span>","children":null,"spread":false},{"title":"confusion_matrix.py <span style='color:#111;'> 643B </span>","children":null,"spread":false},{"title":"confusion_matrix_pretty.py <span style='color:#111;'> 914B </span>","children":null,"spread":false},{"title":"root_mean_squared_error.py <span style='color:#111;'> 489B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

  • factor88 :
    资料挺全的,包含了电子书和源代码,赞
    2019-12-04

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明