机器学习:牛顿方法实现逻辑回归

上传者: wozenmezhemeshuai | 上传时间: 2021-09-29 15:26:11 | 文件大小: 870B | 文件类型: M
实验步骤与内容: 1. 下载数据包ex3Data.zip并解压。 2. 对于这个练习,假设一所高中有一个数据集,代表40名被录取的学生和40名未被录取的学生。 每个(x (i),y(i)) 数据包括两个标准化考试中学生的分数和学生是否被录取的标签。任务是建立一个二元分类模型,根据学生在两次考试中的成绩来估计大学录取机会。 3. polt data:使用不同的符号来表示录取结果,画出图像。 4. 假设模型的函数为sigmoid function: 进行求最优解的代价函数cost function J(θ): 要求的就是J(θ)的最大值(极大似然估计),我们可以选用之前实验使用的梯度下降法,但是该方法的迭代次数较多,所以本次实验中使用的是牛顿迭代法: 牛顿方法: 用Hessian矩阵表示: 5. 在编程序前,要分析下各个计算公式中变量的维度(矩阵行列数)。实验中应定义 θ为0向量,迭代次数通常在5-15次,决策边界定义为: 即 6. 回答下面问题: (1) θ值为多少?我们需要迭代几次? (2) Exam1为20分,exam2为80分的同学会被录取吗?

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明