2022吴恩达机器学习专项课程C2作业第二周

上传者: 65044153 | 上传时间: 2022-12-02 18:27:00 | 文件大小: 20.25MB | 文件类型: ZIP
2022吴恩达机器学习专项课程C2作业第二周 2022吴恩达machine-learning 2.Advanced Learning Algorithms 本资源包含C2W2的测验作业和python大神改进的Jupyter note版本编程作业

文件下载

资源详情

[{"title":"( 94 个子文件 20.25MB ) 2022吴恩达机器学习专项课程C2作业第二周","children":[{"title":"week2","children":[{"title":"4.Practice quiz Activation Functions","children":[{"title":"1.png <span style='color:#111;'> 97.39KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 79.32KB </span>","children":null,"spread":false},{"title":"quiz.md <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 23.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.Practice quiz Neural Network Training","children":[{"title":"1.png <span style='color:#111;'> 100.08KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 87.82KB </span>","children":null,"spread":false},{"title":"quiz.md <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 20.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"9.Practice Lab Neural network training","children":[{"title":"images","children":[{"title":"C2_W2_BinaryVsMultiClass.png <span style='color:#111;'> 43.35KB </span>","children":null,"spread":false},{"title":"C2_W2_smallnetwork.png <span style='color:#111;'> 45.09KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMaxCost.png <span style='color:#111;'> 47.19KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMaxNN.png <span style='color:#111;'> 48.81KB </span>","children":null,"spread":false},{"title":"C2_W2_ReLu.png <span style='color:#111;'> 56.49KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftmaxReg_NN.png <span style='color:#111;'> 45.28KB </span>","children":null,"spread":false},{"title":"C2_W2_NNSoftmax.PNG <span style='color:#111;'> 49.96KB </span>","children":null,"spread":false},{"title":"C2_W2_Assigment_NN.png <span style='color:#111;'> 52.50KB </span>","children":null,"spread":false},{"title":"C2_W2_Softmax.png <span style='color:#111;'> 53.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"lab_utils_softmax.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"logs","children":[{"title":"train","children":[{"title":"events.out.tfevents.1645828646.ed92f2b0de47.31.186.v2 <span style='color:#111;'> 773.81KB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1645828646.ed92f2b0de47.profile-empty <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"plugins","children":[{"title":"profile","children":[{"title":"2022-02-25_22-37-26","children":[{"title":"local.trace <span style='color:#111;'> 18.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"2022-03-20_19-45-46","children":[{"title":"local.trace <span style='color:#111;'> 18.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"events.out.tfevents.1647805546.30f1e0ee4ffd.31.186.v2 <span style='color:#111;'> 762.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"X.npy <span style='color:#111;'> 15.26MB </span>","children":null,"spread":false},{"title":"y.npy <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"autils.py <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"deeplearning.mplstyle <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"public_tests.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"lab_utils_common.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"C2_W2_Assignment.ipynb <span style='color:#111;'> 27.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"work","children":[{"title":"images","children":[{"title":"C2_W2_softmax_accurate.png <span style='color:#111;'> 33.25KB </span>","children":null,"spread":false},{"title":"C2_W2_Softmax_Header.PNG <span style='color:#111;'> 101.69KB </span>","children":null,"spread":false},{"title":"C2_W2_smallnetwork.png <span style='color:#111;'> 45.09KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMaxCost.png <span style='color:#111;'> 47.19KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMaxNN.png <span style='color:#111;'> 48.81KB </span>","children":null,"spread":false},{"title":"C2_W2_ReLu.png <span style='color:#111;'> 56.49KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftmaxReg_NN.png <span style='color:#111;'> 45.28KB </span>","children":null,"spread":false},{"title":"C2_W2_NNSoftmax.PNG <span style='color:#111;'> 49.96KB </span>","children":null,"spread":false},{"title":"C2_W2_ReLU_Network.png <span style='color:#111;'> 35.10KB </span>","children":null,"spread":false},{"title":"C2_W2_mclass_layer2.png <span style='color:#111;'> 189.33KB </span>","children":null,"spread":false},{"title":"C2_W2_Softmax.png <span style='color:#111;'> 53.31KB </span>","children":null,"spread":false},{"title":"C2_W2_mclass_header.png <span style='color:#111;'> 43.35KB </span>","children":null,"spread":false},{"title":"C2_W2_mclass_lab_network.PNG <span style='color:#111;'> 44.84KB </span>","children":null,"spread":false},{"title":"C2_W2_mclass_layer1.png <span style='color:#111;'> 228.83KB </span>","children":null,"spread":false},{"title":"C2_W2_ReLU_Graph.png <span style='color:#111;'> 10.27KB </span>","children":null,"spread":false},{"title":"C2_W2_mclass_relu.png <span style='color:#111;'> 15.18KB </span>","children":null,"spread":false},{"title":"C2_W2_ReLU_Plot.png <span style='color:#111;'> 55.18KB </span>","children":null,"spread":false}],"spread":false},{"title":"C2_W2_Multiclass_TF.ipynb <span style='color:#111;'> 34.11KB </span>","children":null,"spread":false},{"title":"lab_utils_softmax.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"lab_utils_multiclass.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"lab_utils_multiclass_TF.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"autils.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"lab_utils_multiclass_TF.cpython-37.pyc <span style='color:#111;'> 6.54KB </span>","children":null,"spread":false},{"title":"lab_utils_common.cpython-37.pyc <span style='color:#111;'> 10.81KB </span>","children":null,"spread":false},{"title":"lab_utils_relu.cpython-37.pyc <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"autils.cpython-37.pyc <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"lab_utils_multiclass.cpython-37.pyc <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"lab_utils_softmax.cpython-37.pyc <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"lab_utils_relu.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"deeplearning.mplstyle <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"C2_W2_Relu.ipynb <span style='color:#111;'> 29.48KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax.ipynb <span style='color:#111;'> 21.39KB </span>","children":null,"spread":false},{"title":"lab_utils_common.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax-Copy1.ipynb <span style='color:#111;'> 26.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"7.Additional Neural Network Concepts","children":[{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"3.Activation Functions","children":[{"title":"autils.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"autils.cpython-38.pyc <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"lab_utils_common.cpython-38.pyc <span style='color:#111;'> 10.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"lab_utils_relu.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"deeplearning.mplstyle <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"C2_W2_Relu.ipynb <span style='color:#111;'> 30.42KB </span>","children":null,"spread":false},{"title":"lab_utils_common.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"8.Practice quiz Additional Neural Network Concepts","children":[{"title":"1.png <span style='color:#111;'> 151.37KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 252.09KB </span>","children":null,"spread":false},{"title":"quiz.md <span style='color:#111;'> 24B </span>","children":null,"spread":false}],"spread":true},{"title":"1.Neural Network Training","children":[{"title":"README.md <span style='color:#111;'> 7B </span>","children":null,"spread":false}],"spread":true},{"title":"C2_W2_Assignment.ipynb <span style='color:#111;'> 34.12KB </span>","children":null,"spread":false},{"title":"5.Multiclass Classification","children":[{"title":"C2_W2_Multiclass_TF.ipynb <span style='color:#111;'> 34.07KB </span>","children":null,"spread":false},{"title":"lab_utils_softmax.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"lab_utils_multiclass_TF.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"deeplearning.mplstyle <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax.ipynb <span style='color:#111;'> 21.42KB </span>","children":null,"spread":false},{"title":"lab_utils_common.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax-Copy1.ipynb <span style='color:#111;'> 26.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"slides","children":[{"title":"选择激活函数.ppt <span style='color:#111;'> 2.43MB </span>","children":null,"spread":false},{"title":"为什么我们需要激活函数.ppt <span style='color:#111;'> 2.15MB </span>","children":null,"spread":false},{"title":"sigmoid的替代品.ppt <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"Tensorflow实现.ppt <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"训练细节.ppt <span style='color:#111;'> 3.18MB </span>","children":null,"spread":false}],"spread":true},{"title":"6.Practice quiz Multiclass Classification","children":[{"title":"1.png <span style='color:#111;'> 118.56KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 44.98KB </span>","children":null,"spread":false},{"title":"4.png <span style='color:#111;'> 192.14KB </span>","children":null,"spread":false},{"title":"quiz.md <span style='color:#111;'> 46B </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 198.58KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明