深度学习基于ZYNQ的卷积神经网络硬件加速器项目系统源码.zip

上传者: 55305220 | 上传时间: 2022-06-11 09:09:50 | 文件大小: 132.14MB | 文件类型: ZIP
深度学习基于ZYNQ的卷积神经网络硬件加速器项目系统源码。一个非常完整的项目 运行流程 在Lenet5文件夹中训练并测试卷积神经网络。 量化神经网络并测试效果,最后导出参数。 在custom_ip工程待封装的硬件加速器各BROM IP核中加载刚生成的coe文件。 综合custom_ip中的工程,并导出IP核。 在LeNet5_PSPL工程中导入刚生成的IP核,综合、实现、导出bit流。 运行Xilinx SDK,导入测试图片的标签数据,进行测试。 基于ZYNQ实现了软硬协同的硬件加速器系统,实现对于卷积神经网络识别MNIST手写集的加速。 PL端实现硬件加速器(包括卷积层、池化层、全连接层的实现,缓存区,共享乘累加器)。PS端实现验证测试流程的控制(非常简单的逻辑,就是发送start信号,等待done拉高,读出识别结果,重复200次后计算准确率和耗时。真正软硬协同的PS端应该连上摄像头,然后把摄像头的数据发送过去识别。 测试在开发板上的效果是200张图片,准确率96.5%,耗时47ms。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明