人工智能期末大作业大合集+人工智能结课作业大合集.zip

上传者: 55305220 | 上传时间: 2022-06-10 09:10:51 | 文件大小: 23.47MB | 文件类型: ZIP
人工智能期末大作业大合集+课程设计+结课作业大合集。根据作业要求,每个算法都有相应的算法介绍、实验代码、实验结果、实验总结。全部使用Python实现。 人工智能作业大合集总共分为三大部分,每部分由几个相关算法组成,如下: 1、搜索算法 深度优先 广度优先 A星八数码 Tips:三种算法都用于解决八数码问题。在Astar算法中比较了三者的性能,显然Astar要比另外两个强 2、智能优化算法 遗传算法 粒子群寻优算法 蚁群算法 Tips:三种算法都用于解决TSP问题,其中粒子群寻优算法不适合解决TSP问题,但经过改造后仍然可以用于解决TSP。数据集是att48,其最优解是10628/33523,这两个数分别是伪欧氏距离和欧氏距离 3、深度学习 BP神经网络 卷积神经网络 Tips:两种算法都用于解决手写体识别。由于使用的是TensorFlow,已经很好的实现了深度学习的功能。所以主要是学习了深度学习的原理,并能够使用TensorFlow。

文件下载

资源详情

[{"title":"( 64 个子文件 23.47MB ) 人工智能期末大作业大合集+人工智能结课作业大合集.zip","children":[{"title":"AI-Homework-master","children":[{"title":"Search Algorithms","children":[{"title":"BFS","children":[{"title":"BFS.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"Astar","children":[{"title":"Astar.py <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"DFS","children":[{"title":"DFS.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.73KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"img","children":[{"title":"GA-result.png <span style='color:#111;'> 59.68KB </span>","children":null,"spread":false},{"title":"DFS-result.png <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"GA-repeat.png <span style='color:#111;'> 44.55KB </span>","children":null,"spread":false},{"title":"DFS-process.png <span style='color:#111;'> 20.82KB </span>","children":null,"spread":false},{"title":"Astar-result.png <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"PSO-visual.png <span style='color:#111;'> 56.48KB </span>","children":null,"spread":false},{"title":"BP-dfunc.png <span style='color:#111;'> 9.14KB </span>","children":null,"spread":false},{"title":"Astar-tree.png <span style='color:#111;'> 60.45KB </span>","children":null,"spread":false},{"title":"CNN-result.png <span style='color:#111;'> 36.03KB </span>","children":null,"spread":false},{"title":"ACO-result.png <span style='color:#111;'> 25.39KB </span>","children":null,"spread":false},{"title":"BP-result.png <span style='color:#111;'> 40.96KB </span>","children":null,"spread":false},{"title":"hard-case.png <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"PSO-result.png <span style='color:#111;'> 24.54KB </span>","children":null,"spread":false},{"title":"GA-visual.png <span style='color:#111;'> 64.47KB </span>","children":null,"spread":false},{"title":"BFS.png <span style='color:#111;'> 29.02KB </span>","children":null,"spread":false},{"title":"ACO-visual.png <span style='color:#111;'> 22.42KB </span>","children":null,"spread":false},{"title":"BFS-result.png <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"BFS-tree.png <span style='color:#111;'> 164.58KB </span>","children":null,"spread":false},{"title":"DFS.png <span style='color:#111;'> 18.58KB </span>","children":null,"spread":false},{"title":"ACO-repeat.png <span style='color:#111;'> 48.27KB </span>","children":null,"spread":false},{"title":"ACO-ppt.png <span style='color:#111;'> 164.58KB </span>","children":null,"spread":false},{"title":"tree.png <span style='color:#111;'> 62.20KB </span>","children":null,"spread":false},{"title":"CNN-p2.png <span style='color:#111;'> 169.42KB </span>","children":null,"spread":false},{"title":"DFS-case.png <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"BP-chart.png <span style='color:#111;'> 39.49KB </span>","children":null,"spread":false},{"title":"Astar-process.png <span style='color:#111;'> 21.05KB </span>","children":null,"spread":false},{"title":"CNN-p1.png <span style='color:#111;'> 26.45KB </span>","children":null,"spread":false},{"title":"PSO-format.png <span style='color:#111;'> 9.50KB </span>","children":null,"spread":false},{"title":"BFS-process.png <span style='color:#111;'> 20.77KB </span>","children":null,"spread":false},{"title":"DFS-tree.png <span style='color:#111;'> 87.87KB </span>","children":null,"spread":false},{"title":"BP-lossfunc.png <span style='color:#111;'> 6.48KB </span>","children":null,"spread":false},{"title":"BP-func.png <span style='color:#111;'> 28.81KB </span>","children":null,"spread":false},{"title":"PSO-repeat.png <span style='color:#111;'> 44.30KB </span>","children":null,"spread":false},{"title":"CNN-p3.png <span style='color:#111;'> 101.01KB </span>","children":null,"spread":false}],"spread":false},{"title":"Intelligent Optimization Algorithm","children":[{"title":"GA","children":[{"title":"GA.py <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"ACO","children":[{"title":"test.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.10KB </span>","children":null,"spread":false},{"title":"ACO.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"PSO","children":[{"title":"test.txt <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"PSO.py <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Deep Learning","children":[{"title":"CNN","children":[{"title":"input_data.py <span style='color:#111;'> 7.28KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"MNIST_data","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false}],"spread":true},{"title":"CNN.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"BP","children":[{"title":"input_data.py <span style='color:#111;'> 7.28KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"MNIST_data","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false}],"spread":true},{"title":"BP.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明