深度学习大作业文本分类任务源代码+数据集+高分必看.zip

上传者: 55305220 | 上传时间: 2022-06-09 12:05:11 | 文件大小: 52.02MB | 文件类型: ZIP
深度学习大作业文本分类任务源代码。 使用说明如下: Baselines baseline运行方法:运行 codes/baselines/run.py , 用 --model参数指定需要运行的模型(必选),用 --dataset 参数指定数据集(可选,默认为AGNews) baseline中各模型的超参数设置见各模型定义文件中 预训练参数下载地址: 链接:https://pan.baidu.com/s/1wqxUAA4LpE3LIgF3kP-6QQ 提取码:gaw3 下载后放入 codes/baselines/pre_trained 中即可 数据集: 中文数据集,原作者从THUCNews中抽取的20万条新闻标题。一共10个类别,每类2万条。 类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。 英文数据集,来自文本分类经典数据集AG News,包含新闻的标题、内容和标签。使用中对数据进行了简单处理,将标题和内容进行了拼接作为一列,并将训练数据划分为了训练集和验证集。一共4个类别,每类13900条。 类别:世界、体育、商业、科技。

文件下载

资源详情

[{"title":"( 95 个子文件 52.02MB ) 深度学习大作业文本分类任务源代码+数据集+高分必看.zip","children":[{"title":"TextClassification-master","children":[{"title":"codes","children":[{"title":"模型训练参数及各epoch输出","children":[{"title":"AG_FastText_64_64_NoLookAhead.log <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"AG_FastText_64_64_LookAhead.log <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"AG_BERT_64_64_NoLookAhead.log <span style='color:#111;'> 17.03KB </span>","children":null,"spread":false},{"title":"AG_XLNet_32_64_NoLookAhead.log <span style='color:#111;'> 12.37KB </span>","children":null,"spread":false},{"title":"AG_DPCNN_64_64_LookAhead.log <span style='color:#111;'> 5.91KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_cat_AGNews.txt <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"AG_Transformer_64_64_NoLookAhead.log <span style='color:#111;'> 18.92KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_32_128_NoLookAhead.log <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"AG_TextCNN_64_64_NoLookAhead.log <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_64_64_NoLookAhead.log <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_Att_64_64_NoLookAhead.log <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"AG_TextCNN_64_64_LookAhead.log <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"AG_BERT_64_64_LookAhead.log <span style='color:#111;'> 18.38KB </span>","children":null,"spread":false},{"title":"AG_FastText_32_128_NoLookAhead.log <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"best_AGNews.txt <span style='color:#111;'> 14.84KB </span>","children":null,"spread":false},{"title":"AG_DPCNN_32_128_NoLookAhead.log <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"AG_TextCNN_32_128_NoLookAhead.log <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"BERT_AGNews.txt <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_Att_32_128_NoLookAhead.log <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"AG_Transformer_64_64_LookAhead.log <span style='color:#111;'> 15.19KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_add_AGNews.txt <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"AG_XLNet_64_64_LookAhead.log <span style='color:#111;'> 15.17KB </span>","children":null,"spread":false},{"title":"best_THUCNews.txt <span style='color:#111;'> 19.47KB </span>","children":null,"spread":false},{"title":"AG_BERT_SEP_64_64_LookAhead.log <span style='color:#111;'> 20.35KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_64_64_LookAhead.log <span style='color:#111;'> 9.51KB </span>","children":null,"spread":false},{"title":"XLNet_AGNews.txt <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"FastText_AGNews.txt <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"BERT_FastText_cat_AGNews.txt <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"AG_DPCNN_64_64_NoLookAhead.log <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"AG_Transformer_32_128_NoLookAhead.log <span style='color:#111;'> 13.82KB </span>","children":null,"spread":false},{"title":"AG_XLNet_64_64_NoLookAhead.log <span style='color:#111;'> 12.26KB </span>","children":null,"spread":false},{"title":"AG_BERT_32_64_NoLookAhead.log <span style='color:#111;'> 17.13KB </span>","children":null,"spread":false},{"title":"XLNet_FastText_cat_AGNews.txt <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_Att_64_64_LookAhead.log <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"baselines","children":[{"title":"models","children":[{"title":"XLNet_FastText_cat.py <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_add.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"BERT.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"FastText.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"TextRNN.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_cat.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"Transformer.py <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"DPCNN.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"TextRNN_Att.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"XLNet.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"BERT_FastText_cat.py <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"TextCNN.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"ERNIE.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils_bert.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"train_eval_fusion.py <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"pre_trained","children":[{"title":"readme.txt <span style='color:#111;'> 111B </span>","children":null,"spread":false}],"spread":true},{"title":"utils_fasttext.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"train_eval.py <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"run_fusionXB.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"run_error_analysis.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"processAG.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"run_fusion1024.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"AGNews","children":[{"title":"raw","children":[{"title":"class.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 28.11MB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false}],"spread":false},{"title":"vocab","children":[{"title":"vocab_AGNews.pkl <span style='color:#111;'> 189.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"class.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 26.01MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 1.37MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"THUCNews","children":[{"title":"raw","children":[{"title":"class.txt <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 538.67KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 9.49MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 538.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"vocab","children":[{"title":"vocab_THUCNews.pkl <span style='color:#111;'> 73.26KB </span>","children":null,"spread":false},{"title":"vocab.pkl <span style='color:#111;'> 73.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"class.txt <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 538.67KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 9.49MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 538.39KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"AGNews_SEP","children":[{"title":"processed","children":[{"title":"class.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 26.02MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 1.36MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"其他改进思路.txt <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"特征融合改进发现.docx <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 17.67KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 165B </span>","children":null,"spread":false},{"title":"papers","children":[{"title":"BERT Pre-training of Deep Bidirectional Transformers for Language Understanding.pdf <span style='color:#111;'> 757.00KB </span>","children":null,"spread":false},{"title":"Transformer Attention is all you need.pdf <span style='color:#111;'> 1.83MB </span>","children":null,"spread":false},{"title":"TextCNN Convolutional Neural Networks for Sentence Classification.pdf <span style='color:#111;'> 235.97KB </span>","children":null,"spread":false},{"title":"XLNet Generalized Autoregressive Pretraining for Language Understanding.pdf <span style='color:#111;'> 557.38KB </span>","children":null,"spread":false},{"title":"FastText Bag of Tricks for Efficient Text Classification.pdf <span style='color:#111;'> 69.94KB </span>","children":null,"spread":false},{"title":"DPCNN Deep Pyramid Convolutional Neural Networks for Text Categorization.pdf <span style='color:#111;'> 400.07KB </span>","children":null,"spread":false},{"title":"TextRNN Recurrent Neural Network for Text Classification with Multi-Task Learning.pdf <span style='color:#111;'> 791.63KB </span>","children":null,"spread":false},{"title":"ERNIE Enhanced Representation through Knowledge Integration.pdf <span style='color:#111;'> 340.90KB </span>","children":null,"spread":false},{"title":"TextRNN_Att Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification.pdf <span style='color:#111;'> 553.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"TextClassification 改进.md <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明