[{"title":"( 95 个子文件 52.02MB ) 深度学习大作业文本分类任务源代码+数据集+高分必看.zip","children":[{"title":"TextClassification-master","children":[{"title":"codes","children":[{"title":"模型训练参数及各epoch输出","children":[{"title":"AG_FastText_64_64_NoLookAhead.log <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"AG_FastText_64_64_LookAhead.log <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"AG_BERT_64_64_NoLookAhead.log <span style='color:#111;'> 17.03KB </span>","children":null,"spread":false},{"title":"AG_XLNet_32_64_NoLookAhead.log <span style='color:#111;'> 12.37KB </span>","children":null,"spread":false},{"title":"AG_DPCNN_64_64_LookAhead.log <span style='color:#111;'> 5.91KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_cat_AGNews.txt <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"AG_Transformer_64_64_NoLookAhead.log <span style='color:#111;'> 18.92KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_32_128_NoLookAhead.log <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"AG_TextCNN_64_64_NoLookAhead.log <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_64_64_NoLookAhead.log <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_Att_64_64_NoLookAhead.log <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"AG_TextCNN_64_64_LookAhead.log <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"AG_BERT_64_64_LookAhead.log <span style='color:#111;'> 18.38KB </span>","children":null,"spread":false},{"title":"AG_FastText_32_128_NoLookAhead.log <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"best_AGNews.txt <span style='color:#111;'> 14.84KB </span>","children":null,"spread":false},{"title":"AG_DPCNN_32_128_NoLookAhead.log <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"AG_TextCNN_32_128_NoLookAhead.log <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"BERT_AGNews.txt <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_Att_32_128_NoLookAhead.log <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"AG_Transformer_64_64_LookAhead.log <span style='color:#111;'> 15.19KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_add_AGNews.txt <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"AG_XLNet_64_64_LookAhead.log <span style='color:#111;'> 15.17KB </span>","children":null,"spread":false},{"title":"best_THUCNews.txt <span style='color:#111;'> 19.47KB </span>","children":null,"spread":false},{"title":"AG_BERT_SEP_64_64_LookAhead.log <span style='color:#111;'> 20.35KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_64_64_LookAhead.log <span style='color:#111;'> 9.51KB </span>","children":null,"spread":false},{"title":"XLNet_AGNews.txt <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"FastText_AGNews.txt <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"BERT_FastText_cat_AGNews.txt <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"AG_DPCNN_64_64_NoLookAhead.log <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"AG_Transformer_32_128_NoLookAhead.log <span style='color:#111;'> 13.82KB </span>","children":null,"spread":false},{"title":"AG_XLNet_64_64_NoLookAhead.log <span style='color:#111;'> 12.26KB </span>","children":null,"spread":false},{"title":"AG_BERT_32_64_NoLookAhead.log <span style='color:#111;'> 17.13KB </span>","children":null,"spread":false},{"title":"XLNet_FastText_cat_AGNews.txt <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"AG_TextRNN_Att_64_64_LookAhead.log <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"baselines","children":[{"title":"models","children":[{"title":"XLNet_FastText_cat.py <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_add.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"BERT.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"FastText.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"TextRNN.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"XLNet_BERT_cat.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"Transformer.py <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"DPCNN.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"TextRNN_Att.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"XLNet.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"BERT_FastText_cat.py <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"TextCNN.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"ERNIE.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils_bert.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"train_eval_fusion.py <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"pre_trained","children":[{"title":"readme.txt <span style='color:#111;'> 111B </span>","children":null,"spread":false}],"spread":true},{"title":"utils_fasttext.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"train_eval.py <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"run_fusionXB.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"run_error_analysis.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"processAG.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"run_fusion1024.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"AGNews","children":[{"title":"raw","children":[{"title":"class.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 28.11MB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false}],"spread":false},{"title":"vocab","children":[{"title":"vocab_AGNews.pkl <span style='color:#111;'> 189.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"class.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 26.01MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 1.37MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"THUCNews","children":[{"title":"raw","children":[{"title":"class.txt <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 538.67KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 9.49MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 538.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"vocab","children":[{"title":"vocab_THUCNews.pkl <span style='color:#111;'> 73.26KB </span>","children":null,"spread":false},{"title":"vocab.pkl <span style='color:#111;'> 73.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"class.txt <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 538.67KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 9.49MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 538.39KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"AGNews_SEP","children":[{"title":"processed","children":[{"title":"class.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 26.02MB </span>","children":null,"spread":false},{"title":"dev.txt <span style='color:#111;'> 1.36MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"其他改进思路.txt <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"特征融合改进发现.docx <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 17.67KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 165B </span>","children":null,"spread":false},{"title":"papers","children":[{"title":"BERT Pre-training of Deep Bidirectional Transformers for Language Understanding.pdf <span style='color:#111;'> 757.00KB </span>","children":null,"spread":false},{"title":"Transformer Attention is all you need.pdf <span style='color:#111;'> 1.83MB </span>","children":null,"spread":false},{"title":"TextCNN Convolutional Neural Networks for Sentence Classification.pdf <span style='color:#111;'> 235.97KB </span>","children":null,"spread":false},{"title":"XLNet Generalized Autoregressive Pretraining for Language Understanding.pdf <span style='color:#111;'> 557.38KB </span>","children":null,"spread":false},{"title":"FastText Bag of Tricks for Efficient Text Classification.pdf <span style='color:#111;'> 69.94KB </span>","children":null,"spread":false},{"title":"DPCNN Deep Pyramid Convolutional Neural Networks for Text Categorization.pdf <span style='color:#111;'> 400.07KB </span>","children":null,"spread":false},{"title":"TextRNN Recurrent Neural Network for Text Classification with Multi-Task Learning.pdf <span style='color:#111;'> 791.63KB </span>","children":null,"spread":false},{"title":"ERNIE Enhanced Representation through Knowledge Integration.pdf <span style='color:#111;'> 340.90KB </span>","children":null,"spread":false},{"title":"TextRNN_Att Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification.pdf <span style='color:#111;'> 553.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"TextClassification 改进.md <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]