YOLOv5+DeepSORT汽车行人多目标跟踪(追踪+计数)

上传者: 51598242 | 上传时间: 2025-05-12 10:53:24 | 文件大小: 245.04MB | 文件类型: ZIP
YOLOv5与DeepSORT是两个在计算机视觉领域广泛应用的算法,主要负责目标检测和多目标跟踪。在本文中,我们将深入探讨这两个技术以及如何将它们结合用于汽车和行人的多目标跟踪,这对于智能交通系统、自动驾驶车辆以及安全监控等领域具有重要意义。 **YOLOv5详解** YOLO(You Only Look Once)是一种实时的目标检测系统,以其高效和准确而著称。YOLOv5是该系列的最新版本,由Joseph Redmon等人开发,经过多次迭代优化,性能更加强大。它采用了一种单阶段的检测方法,直接从输入图像中预测边界框和类别概率,大大减少了计算时间。YOLOv5引入了以下关键改进: 1. **数据增强**:使用HFlip、Resize、ColorJitter等技术,增强了模型的泛化能力。 2. **模型结构**:采用了更高效的neck设计,如Path Aggregation Network (PANet) 和 Fused Scale金字塔,提高特征融合和多尺度信息利用。 3. **损失函数**:优化了损失函数,如CIoU(Complete IoU),改进了边界框的预测精度。 4. **权重初始化**:使用更好的预训练模型,如COCO数据集,加速收敛。 **DeepSORT详解** DeepSORT是一种基于卡尔曼滤波器和匈牙利算法的多目标跟踪框架。它结合了深度学习模型(如ReID)来估计目标的外观特征,并利用这些特征进行跨帧匹配。其核心组件包括: 1. **特征提取**:通过一个预训练的深度网络(如ResNet或MobileNet)提取目标的外观特征。 2. **卡尔曼滤波**:对目标的运动状态进行预测和更新,以处理目标的短暂遮挡和运动模糊。 3. **相似度度量**:使用马氏距离计算不同帧间目标特征的相似性。 4. **匈牙利算法**:解决分配问题,确定最佳的一一对应关系,确保跟踪的稳定性。 **YOLOv5与DeepSORT结合** 将YOLOv5和DeepSORT结合,可以实现端到端的汽车行人多目标跟踪。YOLOv5首先检测出每一帧中的目标,然后DeepSORT负责在连续帧之间进行目标跟踪。具体流程如下: 1. **目标检测**:YOLOv5模型在输入图像上进行前向传播,输出每个目标的边界框、类别和置信度。 2. **特征提取**:DeepSORT从YOLOv5的输出中提取目标的特征表示。 3. **跟踪初始化**:使用卡尔曼滤波器预测上一帧的目标状态,并为新检测到的目标分配ID。 4. **匹配过程**:根据马氏距离计算当前帧与上一帧目标特征的相似度,使用匈牙利算法进行匹配。 5. **状态更新**:更新匹配成功的目标状态,对未匹配的目标创建新的跟踪。 6. **重复步骤2-5**:对于视频的每一帧,重复以上过程,实现持续的目标跟踪。 这种结合方法在实际应用中表现出了优秀的跟踪性能,尤其在目标密集、遮挡频繁的场景下,能够有效地维持目标的连续性,实现精确的计数和追踪。 总结来说,YOLOv5和DeepSORT的结合为汽车行人多目标跟踪提供了一个强大且实用的解决方案,不仅适用于学术研究,也在实际项目如毕设、课设中大有裨益。通过理解并掌握这两个算法的工作原理和结合方式,开发者可以构建出高效的目标跟踪系统,满足各种复杂场景的需求。

文件下载

资源详情

[{"title":"( 247 个子文件 245.04MB ) YOLOv5+DeepSORT汽车行人多目标跟踪(追踪+计数)","children":[{"title":"CHANGES <span style='color:#111;'> 999B </span>","children":null,"spread":false},{"title":"config <span style='color:#111;'> 307B </span>","children":null,"spread":false},{"title":"description <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"easydict-1.10.dev0-py3.8.egg <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"exclude <span style='color:#111;'> 240B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"pack-842539134e0b77531cdd06a6d6645341e6d5d2fd.idx <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"yolov5-deepsort.iml <span style='color:#111;'> 489B </span>","children":null,"spread":false},{"title":"yolov5-deepsort测距测速(1).iml <span style='color:#111;'> 485B </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 36B </span>","children":null,"spread":false},{"title":"index <span style='color:#111;'> 722B </span>","children":null,"spread":false},{"title":"train.jpg <span style='color:#111;'> 31.24KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 7.63KB </span>","children":null,"spread":false},{"title":"master <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"master <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 65B </span>","children":null,"spread":false},{"title":"1.mp4 <span style='color:#111;'> 101.75MB </span>","children":null,"spread":false},{"title":"wushuiyin.mp4 <span style='color:#111;'> 13.31MB </span>","children":null,"spread":false},{"title":"test_traffic.mp4 <span style='color:#111;'> 10.63MB </span>","children":null,"spread":false},{"title":"test_person.mp4 <span style='color:#111;'> 7.02MB </span>","children":null,"spread":false},{"title":"output_file.mp4 <span style='color:#111;'> 4.89MB </span>","children":null,"spread":false},{"title":"result1.mp4 <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"result2.mp4 <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"output_.mp4 <span style='color:#111;'> 436.11KB </span>","children":null,"spread":false},{"title":"not-zip-safe <span style='color:#111;'> 2B </span>","children":null,"spread":false},{"title":"pack-842539134e0b77531cdd06a6d6645341e6d5d2fd.pack <span style='color:#111;'> 34.46KB </span>","children":null,"spread":false},{"title":"packed-refs <span style='color:#111;'> 945B </span>","children":null,"spread":false},{"title":"PKG-INFO <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"yolov5m.pt <span style='color:#111;'> 41.10MB </span>","children":null,"spread":false},{"title":"yolov5s.pt <span style='color:#111;'> 14.11MB </span>","children":null,"spread":false},{"title":"best.pt <span style='color:#111;'> 13.71MB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 43.51KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 24.54KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 17.90KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 15.89KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 15.89KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 12.15KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 11.82KB </span>","children":null,"spread":false},{"title":"json_logger.py <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"kalman_filter.py <span style='color:#111;'> 11.44KB </span>","children":null,"spread":false},{"title":"linear_assignment.py <span style='color:#111;'> 10.81KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false},{"title":"test_flow.py <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"nn_matching.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"tracker.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"track.py <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 6.98KB </span>","children":null,"spread":false},{"title":"count_person.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"count_car.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.21KB </span>","children":null,"spread":false},{"title":"prepare_car.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"deep_sort.py <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"google_utils.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"prepare_person.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"objtracker.py <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"original_model.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"iou_matching.py <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"objdetector.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"feature_extractor.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"detection.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"draw.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"parser.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"caijian.py <span style='color:#111;'> 778B </span>","children":null,"spread":false},{"title":"tools.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"log.py <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"1.py <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"asserts.py <span style='color:#111;'> 316B </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 293B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets.cpython-311.pyc <span style='color:#111;'> 71.19KB </span>","children":null,"spread":false},{"title":"general.cpython-311.pyc <span style='color:#111;'> 39.42KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明