数学公式识别 Math Formula OCR 识别LaTex

上传者: 45508265 | 上传时间: 2022-05-07 21:05:49 | 文件大小: 44.46MB | 文件类型: ZIP
利用深度学习模型的注意力机制 对LaTex公式进行识别,本项目利用的是tensorflow 可以快速识别图片的latex公式,可以免除打LaTex公式太烦等 包括以下部分 1. 搭建环境 Linux Mac 2. 开始训练 生成小数据集、训练、评价 生成完整数据集、训练、评价 3. 可视化 可视化训练过程 可视化预测过程 4. 评价 5. 模型的具体实现细节 总述 数据获取和数据处理 模型构建 6. 踩坑记录 win10 用 GPU 加速训练 如何可视化Attention层

文件下载

资源详情

[{"title":"( 77 个子文件 44.46MB ) 数学公式识别 Math Formula OCR 识别LaTex","children":[{"title":"LaTeX_OCR-master","children":[{"title":"build.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"gh-md-toc <span style='color:#111;'> 7.85KB </span>","children":null,"spread":false},{"title":"art","children":[{"title":"visualization_data.images_test.6.gif <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false},{"title":"visualization_data.images_test.2.gif <span style='color:#111;'> 4.15MB </span>","children":null,"spread":false},{"title":"visualization_12_long.gif <span style='color:#111;'> 3.13MB </span>","children":null,"spread":false},{"title":"visualization_12_short.gif <span style='color:#111;'> 3.44MB </span>","children":null,"spread":false},{"title":"visualization_14_short.gif <span style='color:#111;'> 3.81MB </span>","children":null,"spread":false},{"title":"visualization_14_long.gif <span style='color:#111;'> 3.26MB </span>","children":null,"spread":false},{"title":"visualization_6_short.gif <span style='color:#111;'> 3.05MB </span>","children":null,"spread":false},{"title":"14.png <span style='color:#111;'> 89.58KB </span>","children":null,"spread":false},{"title":"architecture.jpg <span style='color:#111;'> 111.24KB </span>","children":null,"spread":false},{"title":"visualization_prediction_short.gif <span style='color:#111;'> 3.81MB </span>","children":null,"spread":false},{"title":"predict.png <span style='color:#111;'> 89.58KB </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 97.54KB </span>","children":null,"spread":false},{"title":"12.png <span style='color:#111;'> 98.74KB </span>","children":null,"spread":false},{"title":"visualization_6_long.gif <span style='color:#111;'> 2.71MB </span>","children":null,"spread":false},{"title":"visualization_long.gif <span style='color:#111;'> 3.26MB </span>","children":null,"spread":false}],"spread":false},{"title":"visualize_attention.ipynb <span style='color:#111;'> 467.50KB </span>","children":null,"spread":false},{"title":"dirty","children":[{"title":"decoder.ipynb <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"t.py <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"test.ipynb <span style='color:#111;'> 19.51KB </span>","children":null,"spread":false},{"title":"a.txt <span style='color:#111;'> 281.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"visualization.zip <span style='color:#111;'> 6.62MB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"test.formulas.norm.txt <span style='color:#111;'> 1.41MB </span>","children":null,"spread":false},{"title":"train.formulas.norm.txt <span style='color:#111;'> 11.35MB </span>","children":null,"spread":false},{"title":"val.formulas.norm.txt <span style='color:#111;'> 1.26MB </span>","children":null,"spread":false},{"title":"small.formulas","children":[{"title":"train.norm.txt <span style='color:#111;'> 8.08KB </span>","children":null,"spread":false},{"title":"val.norm.txt <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"test.norm.txt <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"model","children":[{"title":"encoder.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"img2seq.py <span style='color:#111;'> 11.01KB </span>","children":null,"spread":false},{"title":"img2seq_torch.py <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false},{"title":"base_torch.py <span style='color:#111;'> 9.53KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"components","children":[{"title":"DenseNet.py <span style='color:#111;'> 119B </span>","children":null,"spread":false},{"title":"seq2seq_torch.py <span style='color:#111;'> 17.61KB </span>","children":null,"spread":false},{"title":"ResNet.py <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"SimpleCNN.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"positional.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"beam_search_decoder_cell.py <span style='color:#111;'> 14.82KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"greedy_decoder_cell.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"attention_mechanism.py <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false},{"title":"dynamic_decode.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"attention_cell.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"evaluation","children":[{"title":"text.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"image.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"text.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"lr_schedule.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"image.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"data_generator.py <span style='color:#111;'> 7.80KB </span>","children":null,"spread":false}],"spread":false},{"title":"decoder.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"evaluate_img.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"makefile <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"vocab.json <span style='color:#111;'> 159B </span>","children":null,"spread":false},{"title":"model.json <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"training.json <span style='color:#111;'> 387B </span>","children":null,"spread":false},{"title":"data_small.json <span style='color:#111;'> 1018B </span>","children":null,"spread":false},{"title":"training_small.json <span style='color:#111;'> 390B </span>","children":null,"spread":false},{"title":"data.json <span style='color:#111;'> 985B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"vocab_small.json <span style='color:#111;'> 173B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"evaluate_txt.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"visualize_attention-checkpoint.ipynb <span style='color:#111;'> 467.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 10.70KB </span>","children":null,"spread":false},{"title":"visualize_attention.py <span style='color:#111;'> 8.03KB </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 10.69KB </span>","children":null,"spread":false},{"title":".vscode","children":[{"title":"settings.json <span style='color:#111;'> 105B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明