基于 python+深度学习的视觉问答毕业设计(含源码+答辩 ppt)

上传者: 44010641 | 上传时间: 2024-08-24 15:02:35 | 文件大小: 2.73MB | 文件类型: ZIP
【作品名称】:基于 python+深度学习的视觉问答【毕业设计】(含源码+答辩 ppt) 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:对于视觉问答(VQA)的研究具有深刻的学术意义和广阔的应用前景。目前,视觉问答模型性能提升的重点在于图像特征的提取,文本特征的提取,attention权重的计算和图像特征与文本特征融合的方式这4个方面。本文主要针对attention权重的计算和图像特征与文本特征融合这两个方面,以及其他细节方面的地方相对于前人的模型做出了改进。本文的主要工作在于本文使用open-ended模式,答案的准确率采用分数累积,而不是一般的多项选择。本文采用CSF模块(包括CSF_A和CSF_B)不仅对spatial-wise进行了权重计算,还对channel-wise进行了权重计算。本文采用MFB模块和ResNet152 FC层之前的tensor来结合LSTM的输出来计算每个区域的权重,而不是直接把image feature和question feature结合本文采用SigMoid来

文件下载

资源详情

[{"title":"( 70 个子文件 2.73MB ) 基于 python+深度学习的视觉问答毕业设计(含源码+答辩 ppt)","children":[{"title":"Graduation-Design","children":[{"title":"model.png <span style='color:#111;'> 87.30KB </span>","children":null,"spread":false},{"title":"VQA02DataProcess.py <span style='color:#111;'> 10.21KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"MFHBaseline.py <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false},{"title":"record","children":[{"title":"current_['m']_freq_0_layer_0_csf_0.log <span style='color:#111;'> 10.21KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_0_csf_0.log <span style='color:#111;'> 10.98KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_2_csf_0.log <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_1_['cs']_1.log <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_0_['csf']_g_0_co_1.log <span style='color:#111;'> 24.61KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_3_['cs']_g_0_co_0.log <span style='color:#111;'> 37.70KB </span>","children":null,"spread":false},{"title":"current_model_['b']_freq_1_layer_1.log <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_3_['csf']_g_0_co_0.log <span style='color:#111;'> 24.61KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_1_csf_0.log <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_2_['cs']_g_0_co_0.log <span style='color:#111;'> 24.62KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_0_['csf']_g_0_co_0.log <span style='color:#111;'> 24.61KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_2_['cs']_0.log <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_3_['cs']_0.log <span style='color:#111;'> 10.98KB </span>","children":null,"spread":false},{"title":"current_model_['b']_freq_1_layer_0.log <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"current_['m']_freq_0_layer_1_['cs']_g_0_co_0.log <span style='color:#111;'> 24.62KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_1_['cs']_0.log <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"current_['b']_freq_0_layer_1_['cs']_g_0_co_0.log <span style='color:#111;'> 24.62KB </span>","children":null,"spread":false}],"spread":false},{"title":"TEST.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"VQA02train.py <span style='color:#111;'> 16.71KB </span>","children":null,"spread":false},{"title":"VQA01dataset.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"TMP.py <span style='color:#111;'> 10.44KB </span>","children":null,"spread":false},{"title":"VQA02dataset.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"COCO_train2014_000000000009.jpg <span style='color:#111;'> 219.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"VQA01ImageProcess.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"modelResNet.py <span style='color:#111;'> 11.89KB </span>","children":null,"spread":false},{"title":"readme <span style='color:#111;'> 751B </span>","children":null,"spread":false},{"title":"VQA01Baseline.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"VQAv1Dataloader.py <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"eval_tools.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"CSFMODEL.py <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"draft.py <span style='color:#111;'> 6.73KB </span>","children":null,"spread":false},{"title":"VQA02ImageProcess2.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"npy_h5py.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"modules.py <span style='color:#111;'> 11.21KB </span>","children":null,"spread":false},{"title":"DataLoader.py <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"VQA02getdata.py <span style='color:#111;'> 9.31KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 9.82KB </span>","children":null,"spread":false},{"title":"VQA02ImageProcess.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"vqa-tools","children":[{"title":"PythonEvaluationTools","children":[{"title":"vqaEvaluation","children":[{"title":"vqaEval.py <span style='color:#111;'> 7.99KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"vqaEval.cpython-36.pyc <span style='color:#111;'> 7.33KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 159B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"vqaEvalDemo.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"PythonHelperTools","children":[{"title":"vqaTools","children":[{"title":"__init__.py <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"vqa.py <span style='color:#111;'> 6.96KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"vqa.cpython-36.pyc <span style='color:#111;'> 6.77KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"vqaDemo.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"答辩.pptx <span style='color:#111;'> 2.30MB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"MFHMODEL.cpython-35.pyc <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"CSFMODEL.cpython-35.pyc <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"DataLoader.cpython-35.pyc <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"VQA02DataProcess.cpython-35.pyc <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"config.cpython-35.pyc <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"VQAv1Dataloader.cpython-35.pyc <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"modules.cpython-35.pyc <span style='color:#111;'> 6.83KB </span>","children":null,"spread":false},{"title":"MFHBaseline.cpython-35.pyc <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"resnet.cpython-35.pyc <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"modelVGG.py <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false},{"title":"VQA01DataProcess.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"MFHMODEL.py <span style='color:#111;'> 10.52KB </span>","children":null,"spread":false},{"title":"VQAREesNet.py <span style='color:#111;'> 11.84KB </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明