Scalable Deep Gaussian Markov Random Fields for General Graphs.p

上传者: 43909715 | 上传时间: 2022-06-27 22:04:53 | 文件大小: 2.55MB | 文件类型: PDF
图上的机器学习方法在许多应用中已经被证明是有用的,因为它们能够处理一般结构化数据。高斯马尔可夫随机场(GMRFs)框架提供了一种原则性的方法,利用图的稀疏性结构来定义高斯模型。本文在深度GMRF的多层结构基础上,针对一般图提出了一种灵活的GMRF模型,该模型最初只针对格点图提出。通过设计一种新型的层,我们使模型能够缩放到大的图。该层的构造允许使用变分推理和现有的软件框架的图神经网络进行有效的训练。对于高斯似然,潜在场可用接近精确的贝叶斯推断。这允许进行预测,并伴随不确定性估计。在大量的合成和真实数据集上的实验验证了所提出的模型的有效性,在这些实验中,它比其他贝叶斯和深度学习方法都要好。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明