Recent Advances in Reinforcement Learning Theory.pdf

上传者: 43909715 | 上传时间: 2022-05-20 22:05:09 | 文件大小: 5.94MB | 文件类型: PDF
强化学习(RL)通过与复杂环境的交互,推动机器学习从基础数据拟合到学习和规划的新时代。RL具有深度学习功能,在自动驾驶、推荐系统、无线通信、机器人、游戏等领域取得了巨大的成功。RL的成功很大程度上是基于RL算法的基础发展,直到最近才被彻底理解,特别是它们的有限时间收敛速度和样本复杂性。本教程将全面概述基础RL算法的理论理解的最新进展,利用随机近似/优化理论和利用RL问题的马尔可夫结构。本教程还将介绍一些高级的RL算法及其最近的发展。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明