Enhancing preclinical drug discovery with artificial intellige

上传者: 43909715 | 上传时间: 2022-05-12 11:05:11 | 文件大小: 2.76MB | 文件类型: PDF
人工智能(AI)正在成为药物发现的重要组成部分。它具有跨越药物发现和开发价值链的潜力,从目标识别到临床开发。这篇综述,我们提供了当前人工智能技术的概述,并通过突出人工智能对临床前药物发现产生实际影响的例子,对人工智能如何重塑临床前药物发现进行了综述。通过对人工智能在药物发现过程中所带来的基于,我们希望通过讨论人工智能在药物发现过程中所带来的机遇和挑战来提出一个现实的观点。 药物发现是一个漫长、复杂和高风险的过程。开发一种新药通常需要惊人的10-15年时间,平均成本高达28亿美元,其中有惊人比例(80-90%)的药物在临床中失败,其中第二期概念验证(PoC)试验占临床失败的比例最高。尽管在过去10年(2010-2019年),美国食品和药物管理局(FDA)等监管机构批准的新分子实体(NMEs)数量与前10年相比有所增加,但将一种新药推向市场的成本却急剧上升。1-3导致药物创新成本增加的主要驱动因素包括:后期临床自然损耗的投资损失、日益严格的监管体系设置了较高的审批门槛,以及更高的临床试验成本,特别是关键试验。鉴于这些现实,制药和生物技术公司被鼓励创新和采用新技术,以提高生产率,降低成本,

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明