【MIT-AI+医学课程】面向生命科学的深度学习课程

上传者: 43909715 | 上传时间: 2022-04-18 12:05:54 | 文件大小: 649.66MB | 文件类型: RAR
本课程更广泛地介绍了基因组学和生命科学的基础和最先进的机器学习挑战。我们介绍了深度学习和经典机器学习方法来解决关键问题,比较和对比它们的力量和局限性。我们力求使学生能够评估我们在这个快速发展的领域所面临的关键问题的各种各样的解决方案,并执行能够产生巨大影响的新的使能解决方案。作为课程的一部分,学生将实施具有挑战性的问题的解决方案,首先是在一个精心选择的任务集的问题集,然后在一个独立的项目。学生将在Jupyter笔记本中使用Python 3和TensorFlow 2进行编程,这是对仔细记录你的工作的重要性的认可,这样别人就可以精确地复制你的工作。

文件下载

资源详情

[{"title":"( 28 个子文件 649.66MB ) 【MIT-AI+医学课程】面向生命科学的深度学习课程","children":[{"title":"【MIT-AI+医学课程】面向生命科学的深度学习课程","children":[{"title":"l01 Course Intro + Overview Foundations.pdf <span style='color:#111;'> 23.69MB </span>","children":null,"spread":false},{"title":"l07DNA Accessibility, Promoters and Enhancers.pdf <span style='color:#111;'> 13.96MB </span>","children":null,"spread":false},{"title":"l15aGraph analysis.pdf <span style='color:#111;'> 10.00MB </span>","children":null,"spread":false},{"title":"l08Transcription Factors, DNA methylation.pdf <span style='color:#111;'> 93.49MB </span>","children":null,"spread":false},{"title":"l10Single cell RNA-sequencing.pdf <span style='color:#111;'> 68.80MB </span>","children":null,"spread":false},{"title":"l05Interpretability, Dimensionality Reduction.pdf <span style='color:#111;'> 5.55MB </span>","children":null,"spread":false},{"title":"l15bGraph analysis.pdf <span style='color:#111;'> 23.97MB </span>","children":null,"spread":false},{"title":"l13eQTLs.pdf <span style='color:#111;'> 22.11MB </span>","children":null,"spread":false},{"title":"l24aNeuroscience.pdf <span style='color:#111;'> 50.36MB </span>","children":null,"spread":false},{"title":"l23aEHRs and data mining.pdf <span style='color:#111;'> 6.61MB </span>","children":null,"spread":false},{"title":"l14Electronic health records and patient data.pdf <span style='color:#111;'> 22.85MB </span>","children":null,"spread":false},{"title":"l22bImaging and Cancer.pdf <span style='color:#111;'> 2.17MB </span>","children":null,"spread":false},{"title":"l09Gene Expression, Splicing.pdf <span style='color:#111;'> 24.94MB </span>","children":null,"spread":false},{"title":"l11aDimensionality Reduction, Genetics, and Variation.pdf <span style='color:#111;'> 69.90MB </span>","children":null,"spread":false},{"title":"l02ML Foundations.pdf <span style='color:#111;'> 8.14MB </span>","children":null,"spread":false},{"title":"l21Video processing, structure determination.pdf <span style='color:#111;'> 5.47MB </span>","children":null,"spread":false},{"title":"l22aImaging and Cancer.pdf <span style='color:#111;'> 11.56MB </span>","children":null,"spread":false},{"title":"l12GWAS and Rare variants.pdf <span style='color:#111;'> 26.92MB </span>","children":null,"spread":false},{"title":"l06Generative Models, GANs, VAE.pdf <span style='color:#111;'> 23.88MB </span>","children":null,"spread":false},{"title":"l03Convolutional Neural Networks.pdf <span style='color:#111;'> 28.40MB </span>","children":null,"spread":false},{"title":"l20bImaging applications in healthcare.pdf <span style='color:#111;'> 21.58MB </span>","children":null,"spread":false},{"title":"l17bProtein folding.pdf <span style='color:#111;'> 4.08MB </span>","children":null,"spread":false},{"title":"l17aProtein folding.pdf <span style='color:#111;'> 14.44MB </span>","children":null,"spread":false},{"title":"l04Recurrent Neural Networks, Graph Neural Networks.pdf <span style='color:#111;'> 12.45MB </span>","children":null,"spread":false},{"title":"l20aImaging applications in healthcare.pdf <span style='color:#111;'> 29.25MB </span>","children":null,"spread":false},{"title":"l11bDimensionality Reduction, Genetics, and Variation.pdf <span style='color:#111;'> 26.39MB </span>","children":null,"spread":false},{"title":"l24bNeuroscience.pdf <span style='color:#111;'> 64.92MB </span>","children":null,"spread":false},{"title":"l16Drug discovery.pdf <span style='color:#111;'> 45.33MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明