NeuroRA:用于多模式神经数据表示分析的Python工具箱-用于神经科学的表示分析工具箱,包括神经模式相似度(NPS),代表性相似度分析(RSA),时空模式相似度(STPS)和受试者间相关性(ISC)

上传者: 42181693 | 上传时间: 2023-04-06 20:41:47 | 文件大小: 31.15MB | 文件类型: ZIP
#NeuroRA 从多模态神经数据进行表示分析的Python工具箱 概述 代表性相似性分析(RSA)已成为一种流行的有效方法,用于测量不同模式下多变量神经活动的代表性。 NeuroRA是一个基于Python的易于使用的工具箱,可以在几乎所有种类的神经数据中完成有关RSA的一些工作,包括行为,EEG,MEG,fNIRS,sEEG,ECoG,fMRI和其他一些神经电生理数据。 此外,用户可以在NeuroRA上进行神经模式相似度(NPS) ,时空模式相似度(STPS)和受试者间相关度(ISC) 。 安装 点安装神经元 纸 Lu,Z.,&Ku,Y.(2020年)。 NeuroRA:来自多模式神经数据的表示分析的Python工具箱。 神经信息学前沿。 14:563669。 doi:10.3389 / fninf.2020.563669 网站及使用方法 在查看更多详细信息。 您可以在阅读或在下载

文件下载

资源详情

[{"title":"( 111 个子文件 31.15MB ) NeuroRA:用于多模式神经数据表示分析的Python工具箱-用于神经科学的表示分析工具箱,包括神经模式相似度(NPS),代表性相似度分析(RSA),时空模式相似度(STPS)和受试者间相关性(ISC)","children":[{"title":"make.bat <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'> 106.50KB </span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'> 28.00KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"ch2.nii.gz <span style='color:#111;'> 3.35MB </span>","children":null,"spread":false},{"title":"ch2bet.nii.gz <span style='color:#111;'> 1.27MB </span>","children":null,"spread":false},{"title":"HarvardOxford-cort-maxprob-thr0-1mm.nii.gz <span style='color:#111;'> 167.10KB </span>","children":null,"spread":false},{"title":"ERP_pos.h5 <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"ERP_ori.h5 <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"NeuroRAtoolbox.iml <span style='color:#111;'> 499B </span>","children":null,"spread":false},{"title":"NeuroRA-master.iml <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"NeuroRA_Demo2_colab.ipynb <span style='color:#111;'> 41.39MB </span>","children":null,"spread":false},{"title":"NeuroRA_Demo2.ipynb <span style='color:#111;'> 41.39MB </span>","children":null,"spread":false},{"title":"NeuroRA_Demo3.ipynb <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"NeuroRA_Demo1_colab.ipynb <span style='color:#111;'> 381.92KB </span>","children":null,"spread":false},{"title":"NeuroRA_Demo1.ipynb <span style='color:#111;'> 381.86KB </span>","children":null,"spread":false},{"title":"NeuroRA_Demo3_colab.ipynb <span style='color:#111;'> 18.60KB </span>","children":null,"spread":false},{"title":"Overview.jpg <span style='color:#111;'> 4.20MB </span>","children":null,"spread":false},{"title":"logo.jpg <span style='color:#111;'> 85.97KB </span>","children":null,"spread":false},{"title":"logo.jpg <span style='color:#111;'> 85.97KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":".name <span style='color:#111;'> 14B </span>","children":null,"spread":false},{"title":"demo2_rsarlt_img.nii <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"demo2_nps_img.nii <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"Lu_fninf_NeuroRA.pdf <span style='color:#111;'> 11.13MB </span>","children":null,"spread":false},{"title":"NeuroRA_Handbook_for_fMRI.pdf <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"Tutorial.pdf <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"NeuroRA_Handbook_for_EEG:MEG.pdf <span style='color:#111;'> 691.45KB </span>","children":null,"spread":false},{"title":"03.png <span style='color:#111;'> 329.85KB </span>","children":null,"spread":false},{"title":"04.png <span style='color:#111;'> 236.46KB </span>","children":null,"spread":false},{"title":"07.png <span style='color:#111;'> 195.08KB </span>","children":null,"spread":false},{"title":"08.png <span style='color:#111;'> 139.70KB </span>","children":null,"spread":false},{"title":"09.png <span style='color:#111;'> 139.44KB </span>","children":null,"spread":false},{"title":"02.png <span style='color:#111;'> 125.27KB </span>","children":null,"spread":false},{"title":"road-map.png <span style='color:#111;'> 122.17KB </span>","children":null,"spread":false},{"title":"01.png <span style='color:#111;'> 120.64KB </span>","children":null,"spread":false},{"title":"02.png <span style='color:#111;'> 104.12KB </span>","children":null,"spread":false},{"title":"06.png <span style='color:#111;'> 98.70KB </span>","children":null,"spread":false},{"title":"14.png <span style='color:#111;'> 80.31KB </span>","children":null,"spread":false},{"title":"10.png <span style='color:#111;'> 78.21KB </span>","children":null,"spread":false},{"title":"13.png <span style='color:#111;'> 72.23KB </span>","children":null,"spread":false},{"title":"11.png <span style='color:#111;'> 71.29KB </span>","children":null,"spread":false},{"title":"12.png <span style='color:#111;'> 63.31KB </span>","children":null,"spread":false},{"title":"11.png <span style='color:#111;'> 43.35KB </span>","children":null,"spread":false},{"title":"05.png <span style='color:#111;'> 37.64KB </span>","children":null,"spread":false},{"title":"04.png <span style='color:#111;'> 37.64KB </span>","children":null,"spread":false},{"title":"06.png <span style='color:#111;'> 37.51KB </span>","children":null,"spread":false},{"title":"15.png <span style='color:#111;'> 37.44KB </span>","children":null,"spread":false},{"title":"09.png <span style='color:#111;'> 37.43KB </span>","children":null,"spread":false},{"title":"03.png <span style='color:#111;'> 37.38KB </span>","children":null,"spread":false},{"title":"07.png <span style='color:#111;'> 37.34KB </span>","children":null,"spread":false},{"title":"08.png <span style='color:#111;'> 37.34KB </span>","children":null,"spread":false},{"title":"14.png <span style='color:#111;'> 37.15KB </span>","children":null,"spread":false},{"title":"10.png <span style='color:#111;'> 27.84KB </span>","children":null,"spread":false},{"title":"03.png <span style='color:#111;'> 26.62KB </span>","children":null,"spread":false},{"title":"04.png <span style='color:#111;'> 26.60KB </span>","children":null,"spread":false},{"title":"05.png <span style='color:#111;'> 23.41KB </span>","children":null,"spread":false},{"title":"01.png <span style='color:#111;'> 22.81KB </span>","children":null,"spread":false},{"title":"13.png <span style='color:#111;'> 22.56KB </span>","children":null,"spread":false},{"title":"01.png <span style='color:#111;'> 12.80KB </span>","children":null,"spread":false},{"title":"12.png <span style='color:#111;'> 11.74KB </span>","children":null,"spread":false},{"title":"02.png <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"rsa_plot.py <span style='color:#111;'> 43.69KB </span>","children":null,"spread":false},{"title":"corr_cal.py <span style='color:#111;'> 33.13KB </span>","children":null,"spread":false},{"title":"rdm_cal.py <span style='color:#111;'> 26.96KB </span>","children":null,"spread":false},{"title":"stps_cal.py <span style='color:#111;'> 19.74KB </span>","children":null,"spread":false},{"title":"stuff.py <span style='color:#111;'> 17.87KB </span>","children":null,"spread":false},{"title":"nii_save.py <span style='color:#111;'> 17.68KB </span>","children":null,"spread":false},{"title":"rdm_corr.py <span style='color:#111;'> 16.05KB </span>","children":null,"spread":false},{"title":"demo3.py <span style='color:#111;'> 13.15KB </span>","children":null,"spread":false},{"title":"stats_cal.py <span style='color:#111;'> 10.89KB </span>","children":null,"spread":false},{"title":"corr_cal_by_rdm.py <span style='color:#111;'> 10.36KB </span>","children":null,"spread":false},{"title":"isc_cal.py <span style='color:#111;'> 8.56KB </span>","children":null,"spread":false},{"title":"nps_cal.py <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":"demo1.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"demo2.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false},{"title":"t_rsa_plot.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"t_stuff.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"t_corr_cal.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"t_rdm_corr.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"t_rdm_cal.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"t_stats_cal.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"t_stps_cal.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"t_corr_cal_by_rdm.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"t_nps_cal.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"t_isc_cal.py <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"t_nii_save.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"overview.rst <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"rsa.rst <span style='color:#111;'> 528B </span>","children":null,"spread":false},{"title":"stps_cal.rst <span style='color:#111;'> 249B </span>","children":null,"spread":false},{"title":"isc_cal.rst <span style='color:#111;'> 228B </span>","children":null,"spread":false},{"title":"nps_cal.rst <span style='color:#111;'> 228B </span>","children":null,"spread":false},{"title":"nii_save.rst <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明