deep-transfer-learning:深度域自适应算法的实现集合-源码

上传者: 42170790 | 上传时间: 2021-12-19 15:56:29 | 文件大小: 2.75MB | 文件类型: -
在PyTorch上进行深度转移学习 这是用于深度迁移学习的PyTorch库。 我们将代码分为两个方面:单源无监督域自适应(SUDA)和多源无监督域自适应(MUDA)。 SUDA方法很多,但是我发现有一些深度学习的MUDA方法。 此外,具有深度学习的MUDA可能是领域适应性更广阔的方向。 在这里,我实现了一些深度传输方法,如下所示: UDA DDC:针对领域不变性的深度领域混淆最大化 DAN:通过深度适应网络学习可转让特性(ICML2015) Deep Coral:用于深域适应的Deep CORAL相关对齐(ECCV2016) Revgrad:通过反向传播进行无监督域自适应(ICML2015) MRAN:用于跨域图像分类的多表示自适应网络(Neural Network 2019) DSAN:用于图像分类的深度子域适配网络(神经网络和学习系统2020的IEEE交易) 慕达对齐特

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明