scona:使用python分析结构协方差大脑网络的代码

上传者: 42164685 | 上传时间: 2022-05-16 09:41:15 | 文件大小: 11.05MB | 文件类型: ZIP
斯科纳 欢迎来到scona GitHub存储库! :sparkles: 开始使用 如果您不想打扰整个页面,可以通过以下三种方法来弄污双手并探索scona : 使用pip将scona安装为python软件包 pip install -e git+https://github.com/WhitakerLab/scona.git#egg=scona 查看我们的以获取基本功能示例。 或者交互运行它。 阅读文档: : 我们在做什么? scona是执行小号tructural协方差脑N使用蟒etwork一个nalyses的工具包。 scona获取从结构MRI获得的区域皮层厚度数据,并生成一组受试者之间区域之间的相关矩阵。 相关矩阵与networkx软件包一起使用,以生成各种网络和网络度量。 该scona代码库最初由Kirstie Whitaker博士开发,用于精神病学网络中的神经科学出版物“青春期与

文件下载

资源详情

[{"title":"( 64 个子文件 11.05MB ) scona:使用python分析结构协方差大脑网络的代码","children":[{"title":"scona-master","children":[{"title":"scona","children":[{"title":"stats_functions.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"nilearn_plotting.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"visualisations.py <span style='color:#111;'> 24.49KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"useful_functions.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"make_figures.py <span style='color:#111;'> 152.70KB </span>","children":null,"spread":false},{"title":"visualisation_commands.py <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"make_graphs.py <span style='color:#111;'> 15.80KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"NSPN_WhitakerVertes_PNAS2016","children":[{"title":"500.names.txt <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"PARC_500aparc_thickness_behavmerge.csv <span style='color:#111;'> 555.03KB </span>","children":null,"spread":false},{"title":"500.centroids.txt <span style='color:#111;'> 9.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 67B </span>","children":null,"spread":false}],"spread":true},{"title":"classes.py <span style='color:#111;'> 24.10KB </span>","children":null,"spread":false},{"title":"visualisations_helpers.py <span style='color:#111;'> 16.03KB </span>","children":null,"spread":false},{"title":"make_corr_matrices.py <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"make_figures.py <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"graph_measures.py <span style='color:#111;'> 15.95KB </span>","children":null,"spread":false},{"title":"wrappers","children":[{"title":"corrmat_from_regionalmeasures.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"network_analysis_from_corrmat.py <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 117B </span>","children":null,"spread":false}],"spread":false},{"title":"permute_groups.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"bits_and_bobs","children":[{"title":"NSPN_BehaviouralGraphs.ipynb <span style='color:#111;'> 437.11KB </span>","children":null,"spread":false},{"title":"Corr_pathology_SummaryFig_Cost_10.png <span style='color:#111;'> 114.22KB </span>","children":null,"spread":false},{"title":"visualising_behavioural_networks.py <span style='color:#111;'> 19.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"push.sh <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"tutorials","children":[{"title":"interactive_viz_tutorial.ipynb <span style='color:#111;'> 25.22MB </span>","children":null,"spread":false},{"title":"global_measures_viz.ipynb <span style='color:#111;'> 549.50KB </span>","children":null,"spread":false},{"title":"introductory_tutorial.ipynb <span style='color:#111;'> 589.51KB </span>","children":null,"spread":false},{"title":"global_network_viz.ipynb <span style='color:#111;'> 349.78KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 167.82KB </span>","children":null,"spread":false},{"title":"prepare_data.ipynb <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"DEVELOPMENT_GUIDE.md <span style='color:#111;'> 14.91KB </span>","children":null,"spread":false},{"title":"PULL_REQUEST_TEMPLATE.md <span style='color:#111;'> 468B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 10.98KB </span>","children":null,"spread":false},{"title":".travis.yml <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 567B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"source","children":[{"title":"scona.rst <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"plotting.rst <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"local-analysis.rst <span style='color:#111;'> 94B </span>","children":null,"spread":false},{"title":"scona.wrappers.rst <span style='color:#111;'> 688B </span>","children":null,"spread":false},{"title":"introduction.rst <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"scona.datasets.NSPN_WhitakerVertes_PNAS2016.rst <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"create-network.rst <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"sc-matrices.rst <span style='color:#111;'> 145B </span>","children":null,"spread":false},{"title":"scona.scripts.rst <span style='color:#111;'> 806B </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 554B </span>","children":null,"spread":false},{"title":"global-analysis.rst <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"scona.datasets.rst <span style='color:#111;'> 274B </span>","children":null,"spread":false}],"spread":false},{"title":"Makefile <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"tests","children":[{"title":"make_corr_matrices_test.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"regression_test.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"graph_measures_test.py <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"write_fixtures.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":".fixture_hash <span style='color:#111;'> 594B </span>","children":null,"spread":false},{"title":"make_graphs_test.py <span style='color:#111;'> 10.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明