bidirectional_HAR:使用双向LSTM进行人类活动识别

上传者: 42139460 | 上传时间: 2022-04-06 10:32:15 | 文件大小: 113.18MB | 文件类型: ZIP
LSTM用于人类活动识别 使用智能手机传感器数据集(腰部连接的手机)基于LSTM的人类活动识别。 将运动类型分为以下六类: 步行, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 坐下 常设, 铺设。 数据集 可以从下载数据集 点击此以观看有关如何收集数据的视频 通过应用噪声滤波器对传感器信号(加速度计和陀螺仪)进行预处理,然后在2.56秒和50%重叠(128个读数/窗口)的固定宽度滑动窗口中进行采样。 使用巴特沃斯低通滤波器将具有重力和人体运动成分的传感器加速度信号分离为人体加速度和重力。 假定重力仅具有低频分量,因此使用了具有0.3 Hz截止频率的滤波器。 模型 在此仓库中,我们采用了两层堆叠的基本LSTM,几乎使用了原始数据:只有重力效应已从加速度计中滤出,作为另一个3D功能的预处理步骤,以作为帮助学习的输入。 用法 安装TensorFlow r

文件下载

资源详情

[{"title":"( 75 个子文件 113.18MB ) bidirectional_HAR:使用双向LSTM进行人类活动识别","children":[{"title":"bidirectional_HAR-master","children":[{"title":"numpy_lstm.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"freeze_model.py <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"data_util.py <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"2layer256unit.ckpt.zip <span style='color:#111;'> 20.14MB </span>","children":null,"spread":false},{"title":"2layer64unit.model.zip <span style='color:#111;'> 3.11MB </span>","children":null,"spread":false},{"title":"3layer64unit.model.zip <span style='color:#111;'> 4.65MB </span>","children":null,"spread":false},{"title":"3layer64unit.ckpt.zip <span style='color:#111;'> 13.22MB </span>","children":null,"spread":false},{"title":"2layer32unit.ckpt.zip <span style='color:#111;'> 10.32MB </span>","children":null,"spread":false},{"title":"2layer256unit.model.zip <span style='color:#111;'> 17.46MB </span>","children":null,"spread":false},{"title":"2layer128unit.model.zip <span style='color:#111;'> 6.02MB </span>","children":null,"spread":false},{"title":"2layer64unit.ckpt.zip <span style='color:#111;'> 8.82MB </span>","children":null,"spread":false},{"title":"phone_data.zip <span style='color:#111;'> 60.57MB </span>","children":null,"spread":false},{"title":"2layer32unit.model.zip <span style='color:#111;'> 16.51MB </span>","children":null,"spread":false},{"title":"2layer128unit.ckpt.zip <span style='color:#111;'> 11.10MB </span>","children":null,"spread":false}],"spread":false},{"title":"__pycache__","children":[{"title":"freeze_model.cpython-36.pyc <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"data_util.cpython-36.pyc <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"visualize.ipynb <span style='color:#111;'> 261.96KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"2layer32unit60.pb.txt <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"2layer32unit75.pb.txt <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"data.pb.txt <span style='color:#111;'> 32.54MB </span>","children":null,"spread":false},{"title":"2layer32unit35.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"b_out.csv <span style='color:#111;'> 154B </span>","children":null,"spread":false},{"title":"2layer32unit.ckpt.meta <span style='color:#111;'> 9.93MB </span>","children":null,"spread":false},{"title":"w_in.csv <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"2layer32unit31.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"data.x.txt <span style='color:#111;'> 7.94MB </span>","children":null,"spread":false},{"title":"2layer32unit.ckpt.data-00000-of-00001 <span style='color:#111;'> 401.70KB </span>","children":null,"spread":false},{"title":"2layer32unit44.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"UCI HAR Dataset","children":[{"title":"features.txt <span style='color:#111;'> 15.42KB </span>","children":null,"spread":false},{"title":"test","children":[{"title":"y_test.txt <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"X_test.txt <span style='color:#111;'> 25.23MB </span>","children":null,"spread":false},{"title":"Inertial Signals","children":[{"title":"body_acc_y_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"total_acc_z_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"total_acc_y_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"total_acc_x_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"body_acc_x_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"body_gyro_z_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"body_gyro_x_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"body_acc_z_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"body_gyro_y_test.txt <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false}],"spread":false},{"title":"subject_test.txt <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false}],"spread":false},{"title":"train","children":[{"title":"y_train.txt <span style='color:#111;'> 14.36KB </span>","children":null,"spread":false},{"title":"X_train.txt <span style='color:#111;'> 62.95MB </span>","children":null,"spread":false},{"title":"Inertial Signals","children":[{"title":"body_acc_z_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"body_acc_y_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"body_gyro_x_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"total_acc_x_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"total_acc_z_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"body_acc_x_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"total_acc_y_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"body_gyro_z_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false},{"title":"body_gyro_y_train.txt <span style='color:#111;'> 14.37MB </span>","children":null,"spread":false}],"spread":false},{"title":"subject_train.txt <span style='color:#111;'> 19.68KB </span>","children":null,"spread":false}],"spread":false},{"title":"activity_labels.txt <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"features_info.txt <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"b_in.csv <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"data.y.txt <span style='color:#111;'> 1000B </span>","children":null,"spread":false},{"title":"w_out.csv <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"2layer32unit92.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"2layer32unit94.pb.txt <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"data.pb <span style='color:#111;'> 20.09MB </span>","children":null,"spread":false},{"title":"2layer32unit.pb <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"2layer32unit58.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"2layer32unit21.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"2layer32unit34.pb.txt <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"2layer32unit.ckpt.index <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_lstm.py <span style='color:#111;'> 9.04KB </span>","children":null,"spread":false},{"title":"predict_lstm.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明