object_detection_demo:如何轻松轻松地训练物体检测模型

上传者: 42139042 | 上传时间: 2022-06-14 15:36:54 | 文件大小: 7.83MB | 文件类型: ZIP
DLology博客 怎么跑 简单方法:运行 。 另外,如果您想使用图像而不是图像,则此仓库随附。 需要安装 。 分叉并将此存储库克隆到本地计算机。 https://github.com/Tony607/object_detection_demo 安装所需的库 pip3 install -r requirements.txt 第1步:注释一些图像 使用自定义对象保存一些照片,最好将jpg扩展名保存到./data/raw目录。 (如果您的对象很简单,例如此存储库随附的对象,则20张图像就足够了。) 将那些照片调整为统一大小。 例如(800, 600)与 python resize_images.py --raw-dir ./data/raw --save-dir ./data/images --ext jpg --target-size "(800, 600)" 调整大小的图像位于.

文件下载

资源详情

[{"title":"( 55 个子文件 7.83MB ) object_detection_demo:如何轻松轻松地训练物体检测模型","children":[{"title":"object_detection_demo-master","children":[{"title":"local_inference_test.ipynb <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false},{"title":"local_inference_test.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"resize_images.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"generate_tfrecord.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"xml_to_csv.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"test","children":[{"title":"0.jpg <span style='color:#111;'> 180.92KB </span>","children":null,"spread":false},{"title":"10.jpg <span style='color:#111;'> 155.29KB </span>","children":null,"spread":false},{"title":"15.jpg <span style='color:#111;'> 313.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"raw","children":[{"title":".gitignore <span style='color:#111;'> 64B </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"train","children":[{"title":"6.xml <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"11.xml <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"7.xml <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"8.xml <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"2.jpg <span style='color:#111;'> 221.36KB </span>","children":null,"spread":false},{"title":"11.jpg <span style='color:#111;'> 309.77KB </span>","children":null,"spread":false},{"title":"5.xml <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"13.jpg <span style='color:#111;'> 262.91KB </span>","children":null,"spread":false},{"title":"8.jpg <span style='color:#111;'> 232.47KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 236.93KB </span>","children":null,"spread":false},{"title":"1.xml <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 165.56KB </span>","children":null,"spread":false},{"title":"16.jpg <span style='color:#111;'> 340.35KB </span>","children":null,"spread":false},{"title":"0.jpg <span style='color:#111;'> 180.92KB </span>","children":null,"spread":false},{"title":"4.xml <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"0.xml <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"12.jpg <span style='color:#111;'> 314.40KB </span>","children":null,"spread":false},{"title":"14.jpg <span style='color:#111;'> 275.35KB </span>","children":null,"spread":false},{"title":"12.xml <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"2.xml <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 212.31KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 247.06KB </span>","children":null,"spread":false},{"title":"17.jpg <span style='color:#111;'> 325.11KB </span>","children":null,"spread":false},{"title":"9.jpg <span style='color:#111;'> 248.46KB </span>","children":null,"spread":false},{"title":"16.xml <span style='color:#111;'> 803B </span>","children":null,"spread":false},{"title":"13.xml <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"9.xml <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"3.xml <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"17.xml <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"14.xml <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 183.05KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 233.20KB </span>","children":null,"spread":false}],"spread":false},{"title":"test","children":[{"title":"15.xml <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"10.jpg <span style='color:#111;'> 155.29KB </span>","children":null,"spread":false},{"title":"15.jpg <span style='color:#111;'> 313.29KB </span>","children":null,"spread":false},{"title":"10.xml <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitignore <span style='color:#111;'> 13B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 61B </span>","children":null,"spread":false},{"title":"deploy","children":[{"title":"openvino_convert_tf_object_detection.ipynb <span style='color:#111;'> 263.04KB </span>","children":null,"spread":false},{"title":"openvino_inference_benchmark.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"deploy_utils.py <span style='color:#111;'> 817B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 67B </span>","children":null,"spread":false}],"spread":true},{"title":"tensorflow_object_detection_training_colab.ipynb <span style='color:#111;'> 1.93MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明