ydata-synthetic:综合结构化数据生成器-源码

上传者: 42138376 | 上传时间: 2021-09-09 23:32:09 | 文件大小: 427KB | 文件类型: ZIP
加入我们 什么是合成数据? 合成数据是不是从现实世界事件中收集的人为生成的数据。它在不包含任何可识别信息的情况下复制了真实数据的统计组成部分,从而确保了个人的隐私。 为什么要合成数据? 合成数据可用于许多应用程序: 隐私 消除偏见 天平数据集 增强数据集 ydata合成 该存储库包含与用于生成综合数据(特别是常规表格数据和时间序列)的对抗网络有关的材料。它包含一组使用Tensorflow 2.0开发的不同GAN架构。其中包括一个示例Jupyter Notebook,以说明如何使用不同的体系结构。 快速开始 pip install ydata-synthetic 例子 在这里,您可以找到用于综合表格数据的程序包和模型的用法示例。 信用欺诈数据集 库存数据集 项目资源 合成GitHub: : 综合数据社区松弛: 在此存储库中,您可以找到以下GAN架构: 表格数据 顺序数据

文件下载

资源详情

[{"title":"( 59 个子文件 427KB ) ydata-synthetic:综合结构化数据生成器-源码","children":[{"title":"ydata-synthetic-master","children":[{"title":"setup.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"src","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ydata_synthetic","children":[{"title":"evaluation","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"preprocessing","children":[{"title":"timeseries","children":[{"title":"__init__.py <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"stock.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"regular","children":[{"title":"adult.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"credit_fraud.py <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"cardiovascular.py <span style='color:#111;'> 962B </span>","children":null,"spread":false},{"title":"breast_cancer_wisconsin.py <span style='color:#111;'> 624B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"synthesizers","children":[{"title":"timeseries","children":[{"title":"__init__.py <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"timegan","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 13.77KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"gan.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"saving_keras.py <span style='color:#111;'> 802B </span>","children":null,"spread":false},{"title":"regular","children":[{"title":"__init__.py <span style='color:#111;'> 433B </span>","children":null,"spread":false},{"title":"cgan","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"dragan","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false}],"spread":false},{"title":"wgan","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"vanillagan","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false}],"spread":false},{"title":"wgangp","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.93KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"MANIFEST.in <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"dependabot.yaml <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"ISSUE_TEMPLATE","children":[{"title":"bug_report.md <span style='color:#111;'> 687B </span>","children":null,"spread":false},{"title":"feature_request.md <span style='color:#111;'> 610B </span>","children":null,"spread":false}],"spread":true},{"title":"workflows","children":[{"title":"pull_request.yml <span style='color:#111;'> 837B </span>","children":null,"spread":false},{"title":"prerelease.yml <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"master.yml <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"timeseries","children":[{"title":"TimeGAN_Synthetic_stock_data.ipynb <span style='color:#111;'> 421.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"regular","children":[{"title":"adult_wgangp.py <span style='color:#111;'> 684B </span>","children":null,"spread":false},{"title":"adult_dragan.py <span style='color:#111;'> 690B </span>","children":null,"spread":false},{"title":"gan_example.ipynb <span style='color:#111;'> 108.65KB </span>","children":null,"spread":false},{"title":"wgan_example.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"cgan_example.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"setup-utils","children":[{"title":"conda_tensorflowGPU.sh <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false}],"spread":true},{"title":".dvcignore <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":".releaserc.json <span style='color:#111;'> 141B </span>","children":null,"spread":false},{"title":".dvc","children":[{"title":".gitignore <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"config <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"plots","children":[{"title":"smooth.json <span style='color:#111;'> 889B </span>","children":null,"spread":false},{"title":"scatter.json <span style='color:#111;'> 654B </span>","children":null,"spread":false},{"title":"default.json <span style='color:#111;'> 677B </span>","children":null,"spread":false},{"title":"confusion.json <span style='color:#111;'> 740B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明