Imbalanced-Learning:现实世界数据集的学习失衡。 在加拿大的公共道路上对汽车碰撞数据集建模-源码

上传者: 42131316 | 上传时间: 2021-11-02 15:52:16 | 文件大小: 7.16MB | 文件类型: -
加拿大机动车碰撞(1999-2017) 在现实世界的数据集中,类不平衡是一个普遍的问题。 当一个类别(称为多数或否定类别)远远超过另一类别(称为少数或肯定类别)时,就会出现不平衡的数据集。 当正类是关注类时,就会出现类不平衡问题。 我们已经获得了具有固有的不平衡类问题的机动车碰撞的真实世界数据集。 数据集信息: 探索性数据分析 项目目标 了解加拿大公共道路上致命事故的原因,例如车辆型号,年龄段,道路状况等。 建立机器学习预测模型以对致命和非致命碰撞进行分类。 练习技巧 在这个项目中,我们将学习以下技能 数据清理 探索性数据分析 学习不平衡和成本敏感的方法 欠采样 综合少数采样技术(SMOTE) 高级分类模型,例如随机森林分类器和XGBoost 精确调用(PR)曲线和PR曲线下的面积(AUPR) 接收器工作特性(ROC)曲线和ROC下面积(AUROC)

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明