sequence-labeling-BiLSTM-CRF:在Tensorflow中实现的经典BiLSTM-CRF模型,用于序列标记任务。 在Vex版本中,一切都是可配置的-源码

上传者: 42128988 | 上传时间: 2021-12-01 11:51:53 | 文件大小: 73.89MB | 文件类型: -
BiLSTM + CRF用于顺序标记任务 :rocket: :rocket: :rocket: BiLSTM + CRF模型的TensorFlow实现,用于序列标记任务。 项目特色 基于Tensorflow API。 高度可扩展; 一切都是可配置的。 模块化,结构清晰。 对初学者非常友好。 容易DIY。 任务与模型 Sequential labeling是对NLP中的序列预测任务进行建模的一种典型方法。 常见的顺序标记任务包括例如 词性(POS)标记, 块, 命名实体识别(NER) 标点恢复 句子边界检测 范围检测 中文分词(CWG) , 语义角色标签(SRL) 口语理解能力 事件提取 等等... 以命名实体识别(NER)任务为例: Stanford University located at California . B-ORG I-ORG O O B-LOC O 在这里,将提取两个实体, Stanford University和California 。 特别是,文本中的每个token都用相应的label 。 例如

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明