LSTM-人类活动-识别:在智能手机传感器数据集上使用TensorFlow和LSTM RNN的人类活动识别示例。 在六个活动类别中分类运动的类型-Guillaume Chevalier-源码

上传者: 42128015 | 上传时间: 2021-05-04 10:14:43 | 文件大小: 262KB | 文件类型: ZIP
使用智能手机数据集和LSTM RNN的人类活动识别(HAR)。 将运动类型分为以下六类: 步行, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 坐下 常设, 铺设。 与传统方法相比,使用具有长短期记忆单元(LSTM)的递归神经网络(RNN)不需要或几乎不需要特征工程。 数据可以直接馈入神经网络,就像黑盒子一样,对问题进行正确建模。 关于活动识别数据集的可以使用大量的特征工程,这是一种结合了经典数据科学技术的信号处理方法。 就数据预处理量而言,此处的方法非常简单。 让我们使用Google简洁的深度学习库TensorFlow演示LSTM的用法,LSTM是一种可以处理顺序数据/时间序列的人工神经网络。 视频数据集概述 点击此链接可观看其中一位参与者在实验中记录的6个活动的视频: 有关输入数据的详细信息 我将在数据上使用LSTM进行学习(作为连接在腰部的手机),以识别用户正在进行的活动类型。 数据集的描述如下: 传感器信号(加速度计和陀螺仪)通过应用噪声滤波器进行预处理,然后在2.56秒和50%重叠(128个读数/窗口)的固定宽度滑动窗口中采

文件下载

资源详情

[{"title":"( 9 个子文件 262KB ) LSTM-人类活动-识别:在智能手机传感器数据集上使用TensorFlow和LSTM RNN的人类活动识别示例。 在六个活动类别中分类运动的类型-Guillaume Chevalier-源码","children":[{"title":"LSTM-Human-Activity-Recognition-master","children":[{"title":".gitignore <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"data","children":[{"title":".gitignore <span style='color:#111;'> 33B </span>","children":null,"spread":false},{"title":"download_dataset.py <span style='color:#111;'> 914B </span>","children":null,"spread":false},{"title":"source.txt <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 31.79KB </span>","children":null,"spread":false},{"title":"LSTM_files","children":[{"title":"LSTM_18_1.png <span style='color:#111;'> 42.27KB </span>","children":null,"spread":false},{"title":"LSTM_16_0.png <span style='color:#111;'> 75.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"LSTM.ipynb <span style='color:#111;'> 208.53KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明