pyRiemann:Python软件包,用于协方差矩阵处理和生物信号分类,并在脑计算机接口中得到应用-源码

上传者: 42123237 | 上传时间: 2021-08-24 21:11:17 | 文件大小: 87KB | 文件类型: ZIP
派里曼 pyriemann是用于通过黎曼几何进行协方差矩阵操纵和分类的python软件包。 主要目标是对多种生物信号进行分类,例如EEG,MEG或EMG。 这项工作仍在进行中,敬请期待。 此代码是BSD许可的(3子句)。 文献资料 该文档位于 安装 使用PyPI pip install pyriemann 或使用pip + git作为最新版本的代码: pip install git+https://github.com/alexandrebarachant/pyRiemann 当前不支持Anaconda,如果要使用anaconda,则需要在anaconda中创建虚拟环境,将其激活并使用上述命令进行安装。 从来源 对于最新版本,您可以使用setup.py脚本从源文件中安装软件包。 python setup.py install 或在开发人员模式下能够修改源代码。 python

文件下载

资源详情

[{"title":"( 71 个子文件 87KB ) pyRiemann:Python软件包,用于协方差矩阵处理和生物信号分类,并在脑计算机接口中得到应用-源码","children":[{"title":"pyRiemann-master","children":[{"title":"setup.py <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":".codeclimate.yml <span style='color:#111;'> 77B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":".travis.yml <span style='color:#111;'> 736B </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"doc","children":[{"title":"_templates","children":[{"title":"function.rst <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"class.rst <span style='color:#111;'> 164B </span>","children":null,"spread":false}],"spread":true},{"title":"whatsnew.rst <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"installing.rst <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"api.rst <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"_static","children":[{"title":"copybutton.js <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"style.css <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false}],"spread":false},{"title":"introduction.rst <span style='color:#111;'> 71B </span>","children":null,"spread":false}],"spread":true},{"title":"setup.cfg <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"pyriemann","children":[{"title":"estimation.py <span style='color:#111;'> 17.18KB </span>","children":null,"spread":false},{"title":"embedding.py <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"classification.py <span style='color:#111;'> 16.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 233B </span>","children":null,"spread":false},{"title":"spatialfilters.py <span style='color:#111;'> 15.22KB </span>","children":null,"spread":false},{"title":"clustering.py <span style='color:#111;'> 13.50KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"covariance.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"mean.py <span style='color:#111;'> 11.29KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 808B </span>","children":null,"spread":false},{"title":"geodesic.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"viz.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"ajd.py <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"tangentspace.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"distance.py <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"stats.py <span style='color:#111;'> 14.49KB </span>","children":null,"spread":false},{"title":"channelselection.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"tangentspace.py <span style='color:#111;'> 10.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":"motor-imagery","children":[{"title":"README.txt <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"plot_single.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"SSVEP","children":[{"title":"plot_classify_ssvep_mdm.py <span style='color:#111;'> 9.37KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 129B </span>","children":null,"spread":false}],"spread":true},{"title":"ERP","children":[{"title":"plot_classify_MEG_mdm.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"plot_classify_EEG_tangentspace.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"plot_embedding_EEG.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 87B </span>","children":null,"spread":false}],"spread":false},{"title":"README.txt <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"stats","children":[{"title":"plot_oneWay_Manova_frequency.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"oneWay_Manova_ERP.py <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"plot_oneWay_Manova_time.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"plot_oneWay_Manova.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_classification.py <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"test_embedding.py <span style='color:#111;'> 727B </span>","children":null,"spread":false},{"title":"test_ajd.py <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"test_viz.py <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"test_estimation.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"test_utils_distance.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"test_utils_geodesic.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"test_spatialfilters.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"test_utils_tangent_space.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"test_utils_base.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"test_stats.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"test_utils_mean.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"test_tangentspace.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"test_utils_covariance.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"test_channelselection.py <span style='color:#111;'> 913B </span>","children":null,"spread":false},{"title":"test_clustering.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false}],"spread":false},{"title":".coveragerc <span style='color:#111;'> 131B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明