Simulation_2D_SLAM:基于扩展卡尔曼滤波器和加权非线性最小二乘的二维同时定位和映射仿真-源码

上传者: 42117037 | 上传时间: 2021-11-08 07:48:13 | 文件大小: 164KB | 文件类型: -
基于扩展卡尔曼滤波和加权非线性最小二乘的二维同时定位与映射仿真 蓝色圆圈是机器人的真实姿势,红色圆圈是机器人的估计姿势 两个蓝星是特征的实际位置,两个红星是特征的估计位置 介绍 在Matlab中模拟具有两个要素和一个绕要素1旋转的机器人的2D地图。 (机器人可以观察到两个特征相对于自身的角度和距离)。 使用观察数据和控制数据分别基于扩展卡尔曼滤波器(EKF)和加权非线性最小二乘法(WNLS)来估计机器人的姿态和两个特征的位置(即通过EKF和WNLP解决简单的2D SLAM )。 (SLAM):是在构建或更新未知环境的地图同时跟踪代理在其中的位置的计算问题。 先决条件 所有代码仅在 视窗10 1809 Matlab R2018b 不能保证这些代码在其他版本中具有良好的兼容性。 用法 双击F00_Main_EKF.m以运行基于EKF的2D SLAM仿真。 双击F00_Main_NL

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明