KMeans_elbow:使用“肘标准”为K-means算法确定最佳聚类数的代码-源码

上传者: 42116650 | 上传时间: 2021-04-11 10:21:11 | 文件大小: 100KB | 文件类型: ZIP
KMeans算法和Elbow准则 “ k-Means聚类背后的想法是获取一堆数据并确定数据中是否存在任何自然聚类(相关对象的组)。 k-Means算法是所谓的无监督学习算法。 我们事先不知道数据中存在什么模式-它没有形式分类-但我们想知道是否可以将数据以某种方式分为几类。 例如,您可以使用k-Means通过告诉像素根据其颜色值将像素分组为3个群集来查找图像中3种最突出的颜色。 或者,您可以使用它将相关新闻文章分组在一起,而无需事先确定要使用的类别。 该算法将自动找出最佳组。 k均值中的“ k”是一个数字。 该算法假定数据中存在k个中心,各个数据元素分散在周围。 最接近这些所谓质心的数据将被分类或分组在一起。 k-Means不会告诉您每个特定数据组的分类器是什么。 将新闻文章分成几组后,并不能说第一组是关于科学的,第二组是关于名人的,第三组是关于即将举行的选举的,等等。您只知道相关的新闻故事现在在一起了,但不一定是什么这种关系意味着。 k均值仅有助于寻找潜在的集群。” -取自对算法的移植。 存储库包含: 将的模型拟合到。 使用“肘标准”为K-means算法确定最佳聚类数的

文件下载

资源详情

[{"title":"( 7 个子文件 100KB ) KMeans_elbow:使用“肘标准”为K-means算法确定最佳聚类数的代码-源码","children":[{"title":"KMeans_elbow-master","children":[{"title":"kmeans_iris.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"kmeans_elbow.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 698B </span>","children":null,"spread":false},{"title":"kmeans_elbow.ipynb <span style='color:#111;'> 132.71KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 19B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明