上传者: 42115074
|
上传时间: 2021-11-29 18:56:17
|
文件大小: 5.29MB
|
文件类型: -
免责声明
这个项目很稳定,可以长期支持。 它可能包含新的实验代码,其API可能会更改。
因果ML:用于ML进行抬升建模和因果推理的Python包
Causal ML是一个Python软件包,它提供了一套基于最近研究的,使用机器学习算法的提升模型和因果推理方法。 它提供了一个标准界面,允许用户从实验或观察数据中估计条件平均治疗效果(CATE)或个体治疗效果(ITE)。 本质上,它为具有观察特征X用户估计了干预T对结果Y的因果影响,而无需对模型形式做出强烈假设。 典型的用例包括
广告系列定位优化:提高广告系列投资回报率的重要手段是将广告定位到在给定的KPI(例如参与度或销售)方面有良好响应的一组客