clearml:ClearML-自动精简工具套件,可简化ML工作流程。 实验经理,ML-Ops和数据管理

上传者: 42109732 | 上传时间: 2023-06-17 17:26:14 | 文件大小: 4.73MB | 文件类型: ZIP
ClearML-自动魔术工具套件,可简化ML工作流程实验经理,ML-Ops和数据管理 清除ML 前身为快板火车 ClearML是ML / DL开发和生产套件,它包含三个主要模块: -自动进行实验跟踪,环境和结果 -ML / DL作业(K8s /云/裸机)的自动化,管道和编排解决方案 -在对象存储(S3 / GS / Azure / NAS)之上的完全可区分的数据管理和版本控制解决方案 检测这些组件是ClearML服务器,请参阅和 在2分钟内 ClearML实验管理员 仅在代码中添加2行即可获得以下内容 完整的实验设置日志 完整的源代码管理信息,包括未提交的本地更改 执行环境(包括特定的软件包和版本) 超参数 ArgParser用于具有当前使用值的命令行参数 显式参数字典 Tensorflow定义(absl-py) 九头蛇配置和替代 初始模型权重文件 完整的实验输出自动捕获 标准输出和标准错误 资源监控(CPU / GPU利用率,温度,IO,网络等) 模型快照(具有可选的自动上传到中央存储的功能:共享文件夹,S3,GS,Azure,Http) 工件日志和存储(共享文件夹,S3

文件下载

资源详情

[{"title":"( 368 个子文件 4.73MB ) clearml:ClearML-自动精简工具套件,可简化ML工作流程。 实验经理,ML-Ops和数据管理","children":[{"title":"setup.cfg <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"trains.conf <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"clearml.conf <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":"sdk.conf <span style='color:#111;'> 7.31KB </span>","children":null,"spread":false},{"title":"api.conf <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"logging.conf <span style='color:#111;'> 451B </span>","children":null,"spread":false},{"title":"logging.conf <span style='color:#111;'> 125B </span>","children":null,"spread":false},{"title":"webapp_screenshots.gif <span style='color:#111;'> 2.39MB </span>","children":null,"spread":false},{"title":"results_screenshots.gif <span style='color:#111;'> 487.32KB </span>","children":null,"spread":false},{"title":"dataset_screenshots.gif <span style='color:#111;'> 346.70KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"hyper-parameter-optimization <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"jupyter.ipynb <span style='color:#111;'> 84.21KB </span>","children":null,"spread":false},{"title":"jupyter.ipynb <span style='color:#111;'> 82.42KB </span>","children":null,"spread":false},{"title":"audio_classifier_UrbanSound8K.ipynb <span style='color:#111;'> 14.21KB </span>","children":null,"spread":false},{"title":"jupyter_logging_example.ipynb <span style='color:#111;'> 11.74KB </span>","children":null,"spread":false},{"title":"text_classification_AG_NEWS.ipynb <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"train_tabular_predictor.ipynb <span style='color:#111;'> 10.19KB </span>","children":null,"spread":false},{"title":"preprocessing_and_encoding.ipynb <span style='color:#111;'> 9.40KB </span>","children":null,"spread":false},{"title":"download_and_preprocessing.ipynb <span style='color:#111;'> 8.89KB </span>","children":null,"spread":false},{"title":"image_classification_CIFAR10.ipynb <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"jupyter_keras_TB_example.ipynb <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"jupyter_matplotlib_example.ipynb <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"hyperparameter_search.ipynb <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"download_and_split.ipynb <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"audio_preprocessing_example.ipynb <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"tabular_ml_pipeline.ipynb <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"pick_best_model.ipynb <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"picasso.jpg <span style='color:#111;'> 111.89KB </span>","children":null,"spread":false},{"title":"dancing.jpg <span style='color:#111;'> 39.54KB </span>","children":null,"spread":false},{"title":"sample.json <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"logger.md <span style='color:#111;'> 34.90KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.62KB </span>","children":null,"spread":false},{"title":"clearml-task.md <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false},{"title":"datasets.md <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"contributing.md <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 159B </span>","children":null,"spread":false},{"title":"sample.mp3 <span style='color:#111;'> 70.45KB </span>","children":null,"spread":false},{"title":"system_diagram.png <span style='color:#111;'> 78.49KB </span>","children":null,"spread":false},{"title":"compare_values.png <span style='color:#111;'> 50.87KB </span>","children":null,"spread":false},{"title":"compare_plots_hist.png <span style='color:#111;'> 36.78KB </span>","children":null,"spread":false},{"title":"compare_plots.png <span style='color:#111;'> 33.85KB </span>","children":null,"spread":false},{"title":"set_custom_column.png <span style='color:#111;'> 27.12KB </span>","children":null,"spread":false},{"title":"custom_column.png <span style='color:#111;'> 15.81KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 301.36KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 239.61KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 215.87KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 215.60KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 198.89KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 171.23KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 163.89KB </span>","children":null,"spread":false},{"title":"task.py <span style='color:#111;'> 152.02KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 94.58KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 94.03KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 93.92KB </span>","children":null,"spread":false},{"title":"tensorflow_bind.py <span style='color:#111;'> 93.65KB </span>","children":null,"spread":false},{"title":"task.py <span style='color:#111;'> 89.65KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 89.64KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 88.62KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 88.62KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 88.62KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 87.85KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 87.05KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 86.43KB </span>","children":null,"spread":false},{"title":"helper.py <span style='color:#111;'> 84.06KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 83.50KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 82.23KB </span>","children":null,"spread":false},{"title":"events.py <span style='color:#111;'> 82.23KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 82.09KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 82.09KB </span>","children":null,"spread":false},{"title":"workers.py <span style='color:#111;'> 79.16KB </span>","children":null,"spread":false},{"title":"workers.py <span style='color:#111;'> 76.14KB </span>","children":null,"spread":false},{"title":"workers.py <span style='color:#111;'> 76.14KB </span>","children":null,"spread":false},{"title":"workers.py <span style='color:#111;'> 76.14KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 75.05KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 67.99KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 67.99KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 67.96KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 67.96KB </span>","children":null,"spread":false},{"title":"queues.py <span style='color:#111;'> 65.03KB </span>","children":null,"spread":false},{"title":"queues.py <span style='color:#111;'> 65.03KB </span>","children":null,"spread":false},{"title":"queues.py <span style='color:#111;'> 65.03KB </span>","children":null,"spread":false},{"title":"queues.py <span style='color:#111;'> 65.03KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 59.07KB </span>","children":null,"spread":false},{"title":"projects.py <span style='color:#111;'> 59.07KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 58.96KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 56.44KB </span>","children":null,"spread":false},{"title":"pynvml.py <span style='color:#111;'> 54.57KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 54.22KB </span>","children":null,"spread":false},{"title":"scriptinfo.py <span style='color:#111;'> 40.41KB </span>","children":null,"spread":false},{"title":"artifacts.py <span style='color:#111;'> 33.62KB </span>","children":null,"spread":false},{"title":"controller.py <span style='color:#111;'> 32.99KB </span>","children":null,"spread":false},{"title":"reporter.py <span style='color:#111;'> 32.41KB </span>","children":null,"spread":false},{"title":"config_parser.py <span style='color:#111;'> 32.15KB </span>","children":null,"spread":false},{"title":"renderer.py <span style='color:#111;'> 31.07KB </span>","children":null,"spread":false},{"title":"args.py <span style='color:#111;'> 26.31KB </span>","children":null,"spread":false},{"title":"matplotlib_bind.py <span style='color:#111;'> 25.12KB </span>","children":null,"spread":false},{"title":"session.py <span style='color:#111;'> 23.45KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明