BERTem:论文实现(ACL2019):《填补空白:关系学习的分布相似性》

上传者: 42104906 | 上传时间: 2023-01-08 22:33:03 | 文件大小: 363KB | 文件类型: ZIP
实现说明 主要实现文章前半部分的工作,PyTorch实现,基于的工作,PyTorch才是世界上最屌的框架,逃脱。 实现参考 代码说明 (1)主要修改: 输出表示形式: BertForSequenceClassification 输入表示形式: BertEmbeddings 输入和输出都实现了多种策略,可以结合具体的任务,找到最佳的组合。 (2)非主要实现:examples下的关于classification的文件 (3)服务部署:基于Flask,可以在本地开启一个服务。具体实现在中。 (4)代码正确参考,不提供数据集,不提供预训练模型,不提供训练后的模型(希望理解吧)。 (5)相

文件下载

资源详情

[{"title":"( 70 个子文件 363KB ) BERTem:论文实现(ACL2019):《填补空白:关系学习的分布相似性》","children":[{"title":"BERTem-master","children":[{"title":"README.md <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 723B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"conftest.py <span style='color:#111;'> 511B </span>","children":null,"spread":false},{"title":"modeling_gpt2_test.py <span style='color:#111;'> 16.38KB </span>","children":null,"spread":false},{"title":"modeling_test.py <span style='color:#111;'> 22.79KB </span>","children":null,"spread":false},{"title":"modeling_openai_test.py <span style='color:#111;'> 15.05KB </span>","children":null,"spread":false},{"title":"tokenization_test.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"tokenization_gpt2_test.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"optimization_test.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"tokenization_transfo_xl_test.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"modeling_transfo_xl_test.py <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false},{"title":"tokenization_openai_test.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"imgs","children":[{"title":"warmup_cosine_warm_restarts_schedule.png <span style='color:#111;'> 21.79KB </span>","children":null,"spread":false},{"title":"warmup_linear_schedule.png <span style='color:#111;'> 16.38KB </span>","children":null,"spread":false},{"title":"warmup_cosine_schedule.png <span style='color:#111;'> 16.93KB </span>","children":null,"spread":false},{"title":"warmup_cosine_hard_restarts_schedule.png <span style='color:#111;'> 21.83KB </span>","children":null,"spread":false},{"title":"warmup_constant_schedule.png <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"train.sh <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"tacred_run_infer.py <span style='color:#111;'> 23.18KB </span>","children":null,"spread":false},{"title":"run_swag.py <span style='color:#111;'> 23.75KB </span>","children":null,"spread":false},{"title":"run_transfo_xl.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"bertology.py <span style='color:#111;'> 16.75KB </span>","children":null,"spread":false},{"title":"run_squad.py <span style='color:#111;'> 21.29KB </span>","children":null,"spread":false},{"title":"run_gpt2.py <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"run_squad_dataset_utils.py <span style='color:#111;'> 30.25KB </span>","children":null,"spread":false},{"title":"test.sh <span style='color:#111;'> 492B </span>","children":null,"spread":false},{"title":"lm_finetuning","children":[{"title":"simple_lm_finetuning.py <span style='color:#111;'> 27.72KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"pregenerate_training_data.py <span style='color:#111;'> 15.89KB </span>","children":null,"spread":false},{"title":"finetune_on_pregenerated.py <span style='color:#111;'> 16.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"run_classifier_dataset_utils.py <span style='color:#111;'> 19.32KB </span>","children":null,"spread":false},{"title":"tacred_run_classifier.py <span style='color:#111;'> 49.72KB </span>","children":null,"spread":false},{"title":"run_classifier.py <span style='color:#111;'> 49.96KB </span>","children":null,"spread":false},{"title":"run_openai_gpt.py <span style='color:#111;'> 13.33KB </span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'> 11.92KB </span>","children":null,"spread":false},{"title":"sem_run_classifier.py <span style='color:#111;'> 49.96KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"docker","children":[{"title":"Dockerfile <span style='color:#111;'> 197B </span>","children":null,"spread":false}],"spread":true},{"title":"pytorch_pretrained_bert","children":[{"title":"convert_openai_checkpoint_to_pytorch.py <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"convert_gpt2_checkpoint_to_pytorch.py <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'> 17.79KB </span>","children":null,"spread":false},{"title":"convert_pytorch_checkpoint_to_tf.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"modeling_gpt2.py <span style='color:#111;'> 44.54KB </span>","children":null,"spread":false},{"title":"convert_transfo_xl_checkpoint_to_pytorch.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false},{"title":"tokenization_gpt2.py <span style='color:#111;'> 13.85KB </span>","children":null,"spread":false},{"title":"optimization_openai.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"modeling_openai.py <span style='color:#111;'> 45.37KB </span>","children":null,"spread":false},{"title":"modeling_transfo_xl.py <span style='color:#111;'> 58.67KB </span>","children":null,"spread":false},{"title":"convert_tf_checkpoint_to_pytorch.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"tokenization_transfo_xl.py <span style='color:#111;'> 21.82KB </span>","children":null,"spread":false},{"title":"file_utils.py <span style='color:#111;'> 9.13KB </span>","children":null,"spread":false},{"title":"tokenization_openai.py <span style='color:#111;'> 13.87KB </span>","children":null,"spread":false},{"title":"modeling.py <span style='color:#111;'> 64.98KB </span>","children":null,"spread":false},{"title":"modeling_transfo_xl_utilities.py <span style='color:#111;'> 15.73KB </span>","children":null,"spread":false}],"spread":false},{"title":"requirements.txt <span style='color:#111;'> 196B </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"Comparing-TF-and-PT-models-MLM-NSP.ipynb <span style='color:#111;'> 169.10KB </span>","children":null,"spread":false},{"title":"Comparing-TF-and-PT-models-SQuAD.ipynb <span style='color:#111;'> 202.69KB </span>","children":null,"spread":false},{"title":"Comparing-PT-and-TF-models.ipynb <span style='color:#111;'> 90.12KB </span>","children":null,"spread":false},{"title":"Comparing-TF-and-PT-models.ipynb <span style='color:#111;'> 61.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"samples","children":[{"title":"input.txt <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"sample_text.txt <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"hubconfs","children":[{"title":"gpt_hubconf.py <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"bert_hubconf.py <span style='color:#111;'> 16.90KB </span>","children":null,"spread":false},{"title":"gpt2_hubconf.py <span style='color:#111;'> 6.89KB </span>","children":null,"spread":false},{"title":"transformer_xl_hubconf.py <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明