fanalysis:用于因子分析的Python模块

上传者: 42103587 | 上传时间: 2022-06-12 14:52:28 | 文件大小: 2.25MB | 文件类型: ZIP
狂热分析 fanalysis是用于三项BSD许可下分发的用于因子分析的Python模块。 借助此fanalysis软件包,您可以执行以下操作: 简单对应分析 多重对应分析 主成分分析 这些统计方法可以通过两种方式使用: 作为描述性方法(“数据挖掘方法”) 作为scikit学习管道中的简化方法(“机器学习方法”) 安装 依存关系 狂热分析要求: Python 3 NumPy >= 1.11.0 Matplotlib >= 2.0.0 Scikit-learn >= 0.18.0 Pandas >= 0.19.0 用户安装 您可以使用pip安装fanalysis: pip install fanalysis 运行测试 安装后,您可以从源目录外部启动测试套件: python -m unittest 单元测试的原理在于将狂热分析的输出(具有各种参数组合)与R FactoMine

文件下载

资源详情

[{"title":"( 64 个子文件 2.25MB ) fanalysis:用于因子分析的Python模块","children":[{"title":"fanalysis-master","children":[{"title":"setup.py <span style='color:#111;'> 834B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"doc","children":[{"title":"mca_tutorial.ipynb <span style='color:#111;'> 359.50KB </span>","children":null,"spread":false},{"title":"pca_tutorial.ipynb <span style='color:#111;'> 251.30KB </span>","children":null,"spread":false},{"title":"ca_tutorial.pdf <span style='color:#111;'> 448.00KB </span>","children":null,"spread":false},{"title":"mca_tutorial.pdf <span style='color:#111;'> 785.25KB </span>","children":null,"spread":false},{"title":"ca_tutorial.ipynb <span style='color:#111;'> 175.01KB </span>","children":null,"spread":false},{"title":"pca_tutorial.pdf <span style='color:#111;'> 539.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"fanalysis","children":[{"title":"__init__.py <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 29.88KB </span>","children":null,"spread":false},{"title":"pca.py <span style='color:#111;'> 14.00KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"pca_col_contrib_scale_unit_false.txt <span style='color:#111;'> 642B </span>","children":null,"spread":false},{"title":"ca_df_col_header.txt <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"mca_col_labels_string.txt <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"mca_row_coord.txt <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"pca_eig_scale_unit_false.txt <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"mca_row_cos2.txt <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"pca_row_labels.txt <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"mca_col_coord.txt <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"ca_col_coord.txt <span style='color:#111;'> 588B </span>","children":null,"spread":false},{"title":"mca_data_string.txt <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"pca_row_cos2_scale_unit_true.txt <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"mca_col_contrib.txt <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"mca_data_numeric.txt <span style='color:#111;'> 645B </span>","children":null,"spread":false},{"title":"pca_row_cos2_scale_unit_false.txt <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"pca_col_cor_scale_unit_true.txt <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"pca_col_contrib_scale_unit_true.txt <span style='color:#111;'> 611B </span>","children":null,"spread":false},{"title":"ca_row_coord.txt <span style='color:#111;'> 784B </span>","children":null,"spread":false},{"title":"mca_eig.txt <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"pca_col_cor_scale_unit_false.txt <span style='color:#111;'> 688B </span>","children":null,"spread":false},{"title":"mca_col_labels_numeric.txt <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"ca_col_labels.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"ca_col_contrib.txt <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"pca_col_coord_scale_unit_true.txt <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"pca_row_coord_scale_unit_false.txt <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"pca_row_coord_scale_unit_true.txt <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"ca_df_row_header.txt <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"pca_row_contrib_scale_unit_false.txt <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"test_mca.py <span style='color:#111;'> 14.05KB </span>","children":null,"spread":false},{"title":"pca_col_coord_scale_unit_false.txt <span style='color:#111;'> 643B </span>","children":null,"spread":false},{"title":"pca_col_labels.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"ca_row_labels.txt <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"mca_row_labels.txt <span style='color:#111;'> 254B </span>","children":null,"spread":false},{"title":"test_base.py <span style='color:#111;'> 11.60KB </span>","children":null,"spread":false},{"title":"test_ca.py <span style='color:#111;'> 11.57KB </span>","children":null,"spread":false},{"title":"ca_data.txt <span style='color:#111;'> 320B </span>","children":null,"spread":false},{"title":"ca_row_contrib.txt <span style='color:#111;'> 684B </span>","children":null,"spread":false},{"title":"ca_col_cos2.txt <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"pca_col_cos2_scale_unit_false.txt <span style='color:#111;'> 692B </span>","children":null,"spread":false},{"title":"mca_col_cos2.txt <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"ca_row_cos2.txt <span style='color:#111;'> 756B </span>","children":null,"spread":false},{"title":"mca_row_contrib.txt <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"test_pca.py <span style='color:#111;'> 18.87KB </span>","children":null,"spread":false},{"title":"pca_col_cos2_scale_unit_true.txt <span style='color:#111;'> 682B </span>","children":null,"spread":false},{"title":"pca_row_contrib_scale_unit_true.txt <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"mca_col_labels.txt <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"pca_data.txt <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"pca_eig_scale_unit_true.txt <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"ca_eig.txt <span style='color:#111;'> 260B </span>","children":null,"spread":false}],"spread":false},{"title":"mca.py <span style='color:#111;'> 9.93KB </span>","children":null,"spread":false},{"title":"ca.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明