channel-prune-源码

上传者: 42102713 | 上传时间: 2021-11-08 13:19:31 | 文件大小: 22KB | 文件类型: -
这是的PyTorch实现。 在可以实现3倍的模型尺寸缩减,并且精度损失很小。 该项目是从修改而来的,主要区别是: 修剪一次完成,而不是顺序执行。 所引用的原始项目中的FilterPruner和PruningFineTuner被合并到FilterPruner类中,以使其更加简洁。 修剪InceptionV3 , Inception_Resnet_V1 , Resnet50作为示例,您可以为自定义模型定义新的FilterPruner。 笔记: 您可以使用PyTorch的预训练的Resnet50或InceptionV3作为基本模型,并在前面提到的cat-vs-dog数据集中修剪它们。 (请参阅prune_InceptionV3_example.py和prune_Resnet50_example.py) 要修剪新模型,您需要根据模型的体系结构在FilterPruner下定义一个转发函数和

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明